Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Условия возможности катастрофического скачка




Рис. 3

 Из картинки сборки очевидно, что скачок возможен, если величина расщепляющего параметра меньше критической. Расчеты показывают, что, строго говоря, ни один из выбранных нами управляющих параметров не является расщепляющим в чистом виде, то есть не проводит изображающую точку строго по оси сборки. Наиболее близка к этому длина канала (глубина очага) и, кроме того, глубина очага - это наиболее стабильный, обычно почти не меняющийся в процессе извержения, параметр. Поэтому, в первом приближении его можно рассматривать как расщепляющий. Тогда критерием возможности катастрофического скачка будет условие:

Н0<Hкр (8)

Нормальным параметром в начале извержения, в соответствии с приведенными выше рассуждениями, следует считать проводимость канала.

Глубина очага Н0 для каждого конкретного вулкана может быть определена комплексом геофизических методов. Критическая глубина Нкр находится с помощью численных расчетов на основе приведенной модели. Расчеты показали, что Нкр зависит практически только от одного параметра - содержания летучих с0, причем линейно по закону [12]:

Нкр= Н*0*), (9)

Где Н*=356 и с*=0,01 - константы. График зависимости (9) показан на рис.3.

На рисунке хорошо видно, что, хотя катастрофический скачок возможен при различных глубинах очага, большая глубина очага требует для этого и большей массовой доли летучих. Поскольку и глубина очага, и содержание летучих в магме ограничены естественными рамками, область возможности катастрофических скачков оказалась довольно узкой.  

Минимальная глубина устойчивого очага определяется условиями теплообмена (допустимыми потерями тепла через кровлю) и не может быть меньше 5-6 км. (На меньшей глубине возможны только нестабильные, кратковременно сохраняющие активность, небольшие близповерхностные интрузии.) Такой минимальной критической глубине соответствует содержание летучих примерно 2%. Близкое к этому (и меньшее) количество летучих содержится в магмах большинства базальтовых извержений. В этом причина того, что на базальтовых вулканах катастрофических скачков интенсивности не наблюдается.  

Максимальная глубина очага, при которой возможны скачки, ограничивается содержанием летучих. Максимальная величина с0 в вулканических очагах, оцениваемая по фазово-минеральным равновесиям во вкрапленниках, составляет 5-6%. Такому содержанию растворенной воды соответствует критическая глубина очага около 20 км.  

Таким образом, диапазон значений параметров, при которых возможны катастрофические скачки, составляет по содержанию летучих - от 2 до 6%, а по глубине очага - от 5 до 20 км. Реально диапазон уже, так как вблизи его границ скачок будет очень мал. Катастрофические скачки интенсивности практически исключены для базальтовых вулканов, так как магмы таких вулканов обычно содержат относительно мало летучих, и их очаги расположены относительно глубоко. Скачки должны быть свойственны вулканам с кислыми и средними магмами, очаги которых, как правило, расположены на глубинах меньших 20 км, а магмы содержат достаточно много летучих. Это мы и наблюдаем в действительности.

Скачкообразный переход от газопирокластического к экструзивному режиму также определяется соотношением фактической и критической глубин очага [14]. Чем больше фактическая глубина очага при той же критической, тем больше протяженность и полное сопротивление канала, тем больше давление на нижнем его конце и больше абсолютная и относительная протяженность зоны жидкостного потока, тем меньше процесс вспенивания магмы захватывает область очага. Когда перепад давления вследствие извержения уменьшается настолько, что начинается подъем уровня фрагментации, этот подъем, замедляясь, продолжается до тех пор, пока движущий перепад давления не скомпенсируется гидростатическим. Если это происходит до достижения этим уровнем верхнего конца канала, извержение прекращается, если движение продолжается - начинается экструзивная стадия. Последнее требует достаточно большой величины остаточного давления, для чего необходима соответствующая глубина очага. При неглубоком очаге уровень начала газоотделения погружается далеко в очаг, что приводит к значительному его опустошению. Когда давление на нижнем конце канала падает настолько, что начинается обратный подъем уровня фрагментации, запаса энергии в очаге может оказаться недостаточно, чтобы обеспечить подъем даже пористой магмы до поверхности. Извержение прекратится полностью. 

Если очаг достаточно глубок и экструзивная стадия возможна, между ее началом и окончанием плинианской стадии в извержении должен быть перерыв, необходимый для подъема уровня фрагментации к поверхности, тем больший, чем меньше относительная глубина очага. Такой перерыв действительно наблюдался на извержениях, и продолжительность его качественно соответствует расчетной. Так, для Сент Хеленса глубина очага определена величиной 7,2 км и задержка экструзивной стадии составляла 3 недели [18]; для Безымянного глубина очага оценивается величиной 12 км [2], а задержка экструзивной стадии, по-видимому, была менее недели. Извержение вулкана Шивелуч 1964 года вообще не сопровождалось экструзивной стадией. Данных о глубине очага в этом случае не имеется, но, сравнивая с Сент Хеленсом и Безымянным, можно предположить, что она во всяком случае меньше 7 км.

Влияние некоторых внешних факторов, нарушающих идеализированную систему <извергающийся вулкан"

Все проделанные оценки основаны на идеализированной модели жесткой изолированной магматической системы. Неплохое качественное совпадение с наблюдениями говорит об адекватности такой модели в большинстве случаев. Однако, очевидно существование и отклонений от идеальной схемы. Достаточно надежно подтверждены наблюдениями следующие явления: 1 - оседание или обрушение кровли очага в конце плинианской стадии; 2 - боковые внедрения магмы из очага по трещинам; 3 - инъекции в очаг глубинного магматического вещества. 

Оседание или обрушение кровли приводит к образованию кальдер. Описано множество четвертичных кальдер обрушения, сопровождавших КЭИ, современные извержения лишь очень редко сопровождались не очень значительными проседаниями. Образование кальдеры связано с частичным опустошением очага в результате вспенивания магмы в нем, которое может быть количественно описано для любого конкретного вулкана с помощью предложенной теории. В частности, теория позволяет найти максимальную возможную степень опустошения и, соответственно, глубину проседания. Это было проделано и получено удовлетворительное согласие с наблюдениями [11].  

Возможная степень опустошения очага определяет и возможный объем вулканических продуктов, который может быть выброшен за одно извержение. Этот результат важен для прогноза вулканической опасности.

Боковые внедрения магмы в стенки очага и канала приводят к отбору части расхода магмы и, соответственно, влияют на динамику извержения. Если такая боковая трещина возникает в очаге или вблизи него, она увеличивает отбор магмы из очага, но практически не влияет на расход в основном канале. Если же она возникает вблизи уровня фрагментации при достаточно протяженной зоне жидкостного течения, общий расход не изменится, ибо он определяется почти целиком сопротивлением канала на участке жидкостного течения ниже точки отбора, а расход выше точки отбора уменьшится на отбираемую величину. Уровень фрагментации и средняя плотность вещества в канале должны будут повыситься до уровня, соответствующего уменьшенному расходу. Повышение плотности требует дополнительного расхода вещества и эквивалентно дополнительному его отбору в верхней части канала, пока не будет достигнуто новое равновесие. В результате расход на выходе из канала в этот переходный период снизится значительно больше, чем на уровне появления трещины, и может возникнуть полная пауза в извержении. Оценку возможной продолжительности таких пауз позволяет сделать предложенная теория. 

Такие оценки были проделаны автором для извержения Первого Конуса на Толбачинском извержении 1975-1976 гг. [10]. Перед началом извержения Второго Конуса в извержении Первого Конуса произошла серия полных пауз продолжительностью от минут до часов, после которых извержение возобновлялось практически с той же интенсивностью. Аналогичные паузы возникали и в деятельности Второго конуса перед извержением Третьего и образованием более мелких Четвертого конуса и лавовых котлов. Оценки показали, что для таких пауз было достаточно эпизодического отбора от нескольких до 20 процентов расхода вблизи уровня фрагментации. Отбор происходил эпизодами в результате дискретного толчкообразного раскрытия трещин, которое подтверждалось также серией слабых неглубоких землетрясений [1].

Если же значительный отбор магмы через боковые трещины происходит заметно ниже уровня фрагментации при малой протяженности зоны жидкостного течения, он может спровоцировать скачок расхода и переход в катастрофическую фазу. Такой эффект имел прорыв лавы по трещинам на внешних склонах конуса при извержении Везувия в 1906 году [4]. В этом случае отбор привел к кратковременному понижению уровня фрагментации, что оказалось эквивалентным укорочению канала, привело к уменьшению общего сопротивления и "запустило" катастрофический рост расхода. Отбор магмы через боковые трещины сыграл роль спускового крючка.  

Наиболее известный и эффектный из спусковых крючков, запускающих катастрофическую стадию извержения - это обрушение постройки вулкана и последующий взрыв. Вся последовательность событий впервые была четко прослежена на вулкане Сент Хеленс в 1980 году [18]. Во время умеренной стадии извержения началось внедрение в тело вулканической постройки близповерхностной интрузии - "криптокупола", - деформировавшей эту постройку. В конце-концов склон потерял устойчивость и произошел грандиозный обвал, обнаживший криптокупол. Резкое снятие нагрузки привело к бурному выделению газа и его расширению. Расширяющийся газ раздробил и выбросил с большой скоростью материал криптокупола. После этого началась плинианская стадия, продолжавшаяся 9 часов, а через 3 недели после ее окончания начал выдавливаться экструзивный купол.

Здесь была цепочка из двух "спусковых крючков": обвал спровоцировал взрыв, а взрыв - плинианскую фазу, так как обвал и взрыв резко укоротили канал и увеличили его проводимость.

Инъекции глубинного вещества часто стимулируют начало нового извержения или его возобновление после длительной паузы с изменением состава вещества. Теоретическое моделирование этого процесса также возможно с помощью описанной теории.

Заключение

Разработанная теория объясняет механизм развития КЭИ, связывая режим выноса продуктов с характеристиками магматической системы вулкана. Описаны условия возникновения резких скачков интенсивности, представляющих опасность для окружающей среды и человека. Это оказалось возможным благодаря правильному выбору основных допущений и управляющих параметров. Оказалось, что резкие скачки расхода возможны в результате плавного монотонного изменения параметров.  

Выяснена особая роль глубины очага, как расщепляющего параметра, и содержания летучих, определяющего критическую глубину очага, что создает предпосылки для прогноза возможности КЭИ на каждом конкретном вулкане по этим характеристикам. Такой прогноз явился бы шагом вперед по сравнению с прогнозами, основанными на простой экстраполяции истории активности вулкана.  

Теория позволила выяснить роль и механизм действия "спусковых крючков" - внешних факторов, провоцирующих переход в катастрофическую стадию. Ясное представление о механизме действия спусковых крючков также имеет большое практическое значение, так как дает надежный инструмент для прогноза катастрофических изменений в ходе извержения, вызванных внешними по отношению к магматической системе событиями.

Еще одно возможное применение теории - это восстановление истории развития магматической системы вулкана на основе истории его активности, восстановленной геологическими методами.

Список литературы

1. Большое Трещинное Толбачинское Извержение (Камчатка 1975-1976 гг.). М.: Наука, 1984.

2. Кадик А.А., Максимов А.П., ИвановБ.В. Физико-химические условия кристаллизации и генезиса андезитов. М.: Наука, 1986. 158 с.

3. Ковалев Г.Н., Калашникова Л.А., Слезин Ю.Б. О связи между энергией извержений и периодами покоя действующих вулканов // Геология и геофизика. 1971. N3. С.137-141.

4. Лучицкий И.В. Основы палеовулканологии. М.: Изд-во АН СССР, 1971. Т.1. 480 с.

5. Макдональд Г. Вулканы. М.: Мир, 1975. 432 с.

6. Нигматуллин Р.И. Динамика многофазных сред. М.: Наука, 1987. Ч.1 - 370 с. Ч.2. 359 с.

7. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 607 с.

8. Риттман А. Вулканы и их деятельность. Пер. с нем. - М.: Мир, 1964. 427 с.

9. Слезин Ю.Б. Условия возникновения дисперсионного режима при вулканических извержениях // Вулканология и сейсмология. 1979. N3. С.69-76.

10. Слезин Ю.Б. Динамика дисперсионной струи при эксплозивных вулканических извержениях // Вулканология и сейсмология. 1982. N3. С.18-29.

11. Слезин Ю.Б. Механизм опустошения очага при образовании кальдер // Вулканология и сейсмология. 1987. N5. С.3-15.

12. Слезин Ю.Б. Влияние свойств магмы на характер извержения (результаты численного эксперимента) // Вулканология и сейсмология. 1994. N4-5. С.121-127.

13. Слезин Ю.Б. Основные режимы вулканических извержений // Вулканология и сейсмология. 1995. N 2. С.72-82.

14. Слезин Ю.Б. Механизм экструзивных извержений // Вулканология и сейсмология. 1995. N 4-5. С.76-84.

15. Токарев П.И. Некоторые закономерности вулканического процесса // Магмообразование и его отражение в вулканическом процессе. М.: Наука, 1979. 88 с.

16. Simkin T., Siebert L. Explosive Eruptions in Space and Time: Duration, Intervals, and a Comparison of the World's active belts // Explosive volcanism: Inception, Evolution and Hazards. - Washington D.C., National Academy Press, 1984. P.110-121.

17. Sparks R. S. J. The dynamics of bubble formation and growth: a review and analysis // J. of Volcanol. and Geotherm. Res. 1978. N 3. P.1-37.

18. The 1980 Eruption of Mount St.Helens. Washington. U.S. Geol Prof. Paper, 1250. 1980. 844 p.

19. Witham A.G., Sparks R.S.J. Pumice // Bull. Volcanol. 1986. V.48. P.209-223.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...