Устройство рентгеновской трубки.
Стр 1 из 2Следующая ⇒ Введение. Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении между ее электродами. Несмотря на то, что трубка находилась в черном ящике, Рентген обратил внимание, что флуоресцентный экран, случайно находившийся рядом, всякий раз светился, когда действовала трубка. Рентген определил, что газоразрядная трубка является источником нового вида невидимого излучения, обладающего большой проникающей способностью. Ученый не мог определить, было ли это излучение потоком частиц или волн, и он решил дать ему название X-лучи. В последствие их назвали рентгеновскими лучами. Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым γ-излучением. Длина волны X-лучей колеблется от 70 нм до 10-5 нм. Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм), называются мягкими. Длина волны 1 – 10 нм характеризует жесткие X-лучи.
Теория возбуждения рентгеновского излучения. Рентгеновские лучи – это электромагнитное излучение, которое возникает либо при торможении свободно движущейся заряженной частицы, либо при электронных переходах во внутренних оболочках атома. В нормальном состоянии многоэлектронный атом представляет собой положительно заряженное ядро, окруженное системой электронных оболочек от самой внутренней с главным квантовым числом n=1, до внешней с n, соответствующим данному элементу (максимальное значение n=7 соответствует концу таблицы периодической системы элементов). Оболочки обозначаются буквами K,L,M,N,O,P,Q в соответствии с ростом n, начиная от единицы. На каждой оболочке находится определенное число электронов в соответствии с принципом Паули. Следует отметить, что понятие “оболочка” более соответствует энергетическому понятию (которое можно заменить термином “уровень энергии”), чем координатному. В соответствии с квантовой механикой электроны в атоме как бы “размазаны” по объему с максимумом вероятности локализации на оболочке.
В нормальном состоянии атом не излучает и не поглощает энергию. Излучение, связанное с переходами во внутренних оболочках возможно лишь в случае, когда один или несколько внутренних электронов будут удалены. Любой электрон, принадлежащий внешней (по отношению к образовавшейся вакансии – “дырке”) оболочке, оказывается возбужденным. Это приводит к переходам с более высоких уровней на уровень вакансии с излучением рентгеновского кванта. Если выбит K-электрон, то переходы на образовавшуюся вакансию с выше лежащих L,M,N... уровней образуют наиболее коротковолновую K- серию излучения. Аналогичный процесс наблюдается при переходах на вакансии L-уровней (L-серии), вакансии M-уровней (M-серии) и т.д. (рис 1) Рис. 1. Схема рентгеновских уровней и переходов, образующих K, L, M, N серии. Kгр, Lгр, Mгр, Nгр - границы серий, соответствующие переходам в непрерывный спектр. n - главное квантовое число. Устройство рентгеновской трубки. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка. Рентгеновская трубка представляет собой двух-электродный ваккумный прибор (рис. 2.1). Подогревный катод 1 испускает электроны 4. Анод 2, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение 3 под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом. Разность потенциалов между катодом и анодом (антикатодом), достигает несколько сотен киловольт. Электроны ускоряются электрическим полем в рентгеновской трубке. Поскольку в трубке очень небольшое число молекул газа, то электроны по пути к аноду практически не теряют своей энергии. Они достигают анода с очень большой скоростью. Часть энергии, не рассеивающая в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи). Таким образом, рентгеновские лучи являются результатом бомбардировки электронами вещества анода.
Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская трубка с вращающимся анодом (рис. 2.2). Рис. 2.1 Рис. 2.2 По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое. Тормозное излучение. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна. При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. На рис. 3 представлены зависимости потока рентгеновского излучения от длины волны λ (спектры) при разных напряжениях в рентгеновской трубке: U1 < U2 < U3.
Поток рентгеновского излучения вычисляется по формуле (1): (1) где U и I - напряжение и сила тока в рентгеновской трубке; Z - порядковый номер атома вещества анода; k - коэффициент пропорциональности. В каждом из спектров наиболее коротковолновое тормозное излучение ληίη возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона. , (2) Откуда . (3) Эту формулу можно преобразовать в более удобное для практических целей выражение: , (4) где – длина волны в ангстремах, U – напряжение в кВ. Формула (4) соответствует рис. 3 Заметим, что на основе (3) разработан один из наиболее точных способов экспериментального определения постоянной Планка. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения, как это видно из рис. 3 и формулы (4), и увеличивают жесткость. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. На рис. 4.1 показаны спектры тормозного рентгеновского излучения при одном напряжении, но при разной силе тока накала катода: Iн1 < Iн2. Спектры, полученные от разных антикатодов при одинаковых U и IH, изображены на рис. 4.2. Рис. 4.1 Рис. 4.2 Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром. По аналогии с белым светом его также называют белым рентгеновским излучением.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|