Применение метода лазерной искровой спектроскопии в экологических исследованиях.
Проблема загрязнения морей приобретает все более глобальный характер. Прогрессирующее загрязнение морской воды связано со стоками промышленных и бытовых отходов, результатами производственной деятельности человека. Последствия загрязнения сказываются на всех сторонах жизнедеятельности океана. Хорошо известно токсичное воздействие хлорорганических соединений, нефтепродуктов, соединений ртути, свинца, кадмия и мышьяка. Значительно меньше уделяется внимание основным биогенным элементам, которые также могут быть загрязнителями, так как поступают в морскую воду в результате производственной деятельности в избыточных количествах. Поскольку для нормальной жизнедеятельности фитопланктона необходимо поддержание биогенных элементов на определенном уровне происходит накопление им последних [1,2]. Увеличение содержания упомянутых компонент в морской воде может привести к изменению видового состава всей экосистемы, так как они включаются в биотический круговорот и накапливаются в различных звеньях пищевой цепи морей. В связи с этим необходимо проведение мониторинга качества морской воды и планктонного сообщества вязаного с изучением изменения их элементного состава, что требует поступление информации в режиме реального времени, так как визуализация загрязнение наступает при концентрациях значительно превышающих предельно допустимые нормы. Это возможно при наличии методов позволяющих определять элементный состав экспрессно и дистанционно. Таким является метод лазерной искровой спектроскопии (ЛИС, именуемый в англоязычной литературе как laser induced breakdown spectroscopy LIBS), представляющий собой разновидность атомного эмиссионного спектрального анализа. Возбуждение эмиссионного спектра исследуемого вещества в этом случае осуществляется за счет энергии короткого остросфокусированного лазерного импульса. Принципы калибровки традиционны для методик эмиссионного спектрального анализа [3]. К преимуществам ЛИС следует отнести оперативность, отсутствие непосредственного контакта с анализируемым веществом и предварительной подготовки проб для анализа, проведение анализа вне зависимости от фазового состояния исследуемого вещества, отсутствие непосредственного контакта с анализируемым веществом, что дает возможность использовать ЛИС для дистанционного анализа и получения информации в режиме реального времени.
Лазерная искровая спектроскопия твердых тел к настоящему времени считается хорошо разработанным и описанным в литературе методом [4]. Уже первые работы по применению ЛИС для определения элементного состава морской воды показали перспективность этого данного метода [5–7]. Однако в этих и более поздних работах [8,9] использовались стационарные, лабораторные установки. В данной работе приводятся результаты использования ЛИС для определения элементного состава морской воды, фитопланктона и донных отложений во время экспедиций, проводимых на парусном учебном судне (ПУС) «Надежда» в 2000–2002 гг. Поскольку стандартной аппаратуры для ЛИС практически нет, то был создан мобильный судовой аналитический комплекс. Небольшие габариты и вес позволяют размещать его на письменном столе в помещениях ПУС. Вес комплекса с управляющей ЭВМ и системой охлаждения не превышает 50 кг. Принципиальная схема приведена на рисунке 1. Для возбуждения плазменного факела на поверхности исследуемых веществ использовался Nd: YAG лазер с одним каскадом усиления. Параметры лазера и системы регистрации приведены в таблице 1. Применение в качестве пассивного модулятора добротности кристалла с центрами окраски позволило получать цуг наносекундных импульсов.
Таблица 1. Основные параметры ЛИС спектрометра.
Использование методики возбуждения эмиссионного спектра исследуемых объектов лазерным импульсом сложной формы в сочетании с пространственной селекцией излучения [13] позволило получить пределы определения (ПО) ряда элементов сравнимые с данными полученными в случае использования ССD камер с временной селекцией излучения [9]. Примеры ПО приведены в таблице 2. Там же даны аналитические линии, по которым осуществлялись элементоопределения.
Таблица 2. Аналитические линии и пределы обнаружения методом ЛИС
Результаты определения элементного состава отобранных проб показали, что в отдалении от мест добычи нефти элементный состав морской воды и фитопланктона согласуется с литературными данными. При приближении к буровым установкам в пробах наблюдается повышенное содержание бария и фосфора. Так содержание бария в морской воде изменялось от 11 (ст. 1) до 14г/л (ст. 4), что значительно превышает содержание данного элемента приводимое для данных мест в литературе. В фитопланктоне содержание бария 12г/кг, фосфора 14г/кг и значительно превышает содержание анализируемых элементов в районах отдаленных от буровых [14]. Пробы грунта удалось получить только на расстоянии 2,5 морских мили от буровых установок. Концентрация бария и фосфора в донных осадках составила 16 и 11г/кг, соответственно. На станциях отдаленных от мест добычи нефти содержание бария и фосфора морской воде и фитопланктоне, донных осадках приходит в соответствие с литературными данными[15]. Повышенные содержание бария и фосфора в исследованных объектах, вероятно, связаны со сливом бурового раствора в море (что неоднократно наблюдалось во время проведения измерений).
Еще одна возможность применения ЛИС для оценок экологической ситуации основывается на полученных корреляциях между изменением интенсивности аналитической линии натрия, используемой для определения содержания натрия в морской воде, и соленостью, определенной по стандартной методике. Интересно, что при этом не обязательно знание абсолютных значений концентрации и солености, а лишь необходим вид кривой, то есть угол наклона и коэффициент корреляции. Аналогичные зависимости получены между содержанием магния и кремния в морской воде и содержанием фитопланктон. Поскольку эти элементы характерны для фитопланктона Охотского моря, представленного в основном диатомовыми водорослями, то прослеживается возможность оценки изменения содержания фитопланктона по изменению интенсивности эмиссионных линий магния либо кремния. Приведенные примеры указывают на возможность использования ЛИС в качестве «тестера» при контроле над изменением параметров среды. Резюмируя, можно сказать, что использование метода лазерной искровой спектроскопии с использованием разработанной и созданной установки позволяет производить контроль над содержанием загрязняющих элементов в морской воде, фитопланктоне и донных осадках. Основным преимуществом является возможность контроля в реальном времени и в натурных условиях. Следует отметить, что процесс определения элементов автоматизирован до уровня выдачи протокола. Относительное среднее квадратичное отклонение определений находится на уровне 8–15%. Погрешность, возникающая за счет аппаратуры, не превышает 5%. Литература
1. И.Р. Шен. Нелинейная оптика. М.: Наука, 1989. 2. В. Демтредер. Лазерная спектроскопия. М.: Наука 1985. 3. В.С. Летохов, В.П. Чеботаев. Принципы нелинейной лазерной спектроскопии. М.: Наука, 1975. 4. Нелинейная спектроскопия. Под ред. Н. Бломбергена. М.: Мир. 1979. 5, С.А. Ахманов, Н.И. Коротеев. Методы нелинейной оптики в спектроскопии рассеяния света. М.: Наука. 1981. 6. Дж. Ниблер, Г. Найтен. Спектроскопия когерентного антистоксова рассеяния света. В сб. Спектроскопия комбинационного рассеяния света в газах и жидкостях. Под ред. А. Вебера. М.: Мир, 1982. 7. Лазерная спектроскопия комбинационного рассеяния в кристаллах и газах. Труды ИОФАН, т. 2, 1986 г. 8. Ю.Н. Поливанов. Комбинационное рассеяние света на поляритонах. Успехи физ. наук, 1978 г., т. 126, вып. 2. с. 185. 9. Ю.Н. Поливанов. Нелинейно-оптическое рассеяние света с участием фононных поляритонов. Труды ИОФРАН, т. 43, с. 3, 1993. ЛИТЕРАТУРА 1. Океанографическая энциклопедия. // Под ред. З.И. Мироненко и др., Гидрометеоиздат, 1974 г., 631 с. 2. И.А. Киселев, Планктон морей и континентальных водоемов // т. 2, Наука, 1980 г., 440 с. 3. Л.Т. Сухов. Лазерный спектральный анализ. // Новосибирск, «Наука», 1990, 139 с. 4. D.A. Rusak, B.C. Castle, B.W. Smith, J.D. Winefordner Recent trends and the future of laser – induced plasma spectroscopy. // Trends in analytical chemistry. v. 17. n. 8+9. 1998. p. 453–461. 5. Букин О.А., Павлов А.Н., Сушилов Н.В. Использование спектроскопии лазерной искры для анализа элементного состава водных сред. // ЖПС. – 1990. – T.5 2.– №5. - C.736–738. 6. Прохоров А.М., Власов Д.В., Ципенюк Д.Ю. и др. Исследование возможности дистанционного определения содержания железа в морской воде по эмиссионному спектру лазерного пробоя. // ЖПС. 1991. - T. 55.– №2. - C. 313–314. 7. О.А. Букин, Ю.А. Зинин, Э.А. Свириденков и др. Определение макросостава морской воды методом лазерной искровой спектроскопии. // Оптика атмосферы и океана. 1992. Т. 5, №11. С. 1213–1216. 12. О.А. Букин, А.А. Ильин, С.С. Голик и др. Динамические характеристики спектров плазмы, генерируемой на поверхности твердых и жидких мишеней при воздействии лазерным импульсом сложной формы. // ЖПС. – 2003. – T. 70.– №4. - C. 531–535. 13. О.А. Букин, А.А. Ильин, С.С. Голик и др. Использование многоимпульсного возбуждения лазерной плазмы для исследования элементного состава конденсированных сред. // Оптика атмосферы и океана. – 2003. - T. 16. – №1. 14. Патин С.А. Влияние загрязнения на биологические ресурсы и продуктивность мирового океана // Москва. Пищевая промышленность. -1997.-304 с. 15. Астахов А.С., Поляков Д.М., Слинко Е.Н. и др. Распределение металлов в донных осадках Японского моря (на примере профиля Владивосток Ниигата) // Тематический выпуск ДВНИГМИ №3. – Владивосток. – Дальнаука. – 2000. - С. 150–165.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|