Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Резонансные методы измерения параметров цепей

 

При резонансных методах измерений используются физические явления в колебательных контурах и генераторах. Соответственно методы подразделяются на контурные и генераторные. Генераторные методы в настоящее время находят, в силу разных причин, ограниченное применение. Наиболее универсальным прибором для измерения параметров цепей является ку метр (от латинской буквы Q — характеристики добротности катушки индуктивности), в котором основная измерительная цепь — последовательный колебательный контур.

Упрощенная структурная схема куметра представлена на рис.32. Источником синусоидальных сигналов, подаваемых на последовательный резонансный контур, является генератор тока, нагруженный на малое активное сопротивление R0 0,05 Ом. Частота выходных колебаний генератора может изменяться в широких пределах. Уровень входного сигнала необходимо поддерживать постоянным (по вольтметру VI).

 

 

Рис.32. Упрощенная структурная схема куметра

 

При измерении индуктивности катушку подключают к зажимам 12. В этом случае резонансный контур будет образован катушкой измеряемой индуктивности Lx с активными потерями RL и межвитковой емкостью ее проводов СL, а также перестраиваемой эталонной емкостью Сэ. Резонанс в контуре на заданной частоте достигается изменением величины емкости Сэ, эталонного конденсатора. Состояние резонанса контура определяется по вольтметру V2, отградуированному в значениях добротности Q. Если измерения емкости Сэ произвести на двух резонансных частотах, то их можно вычислить по следующим уравнениям:

                                                                                    (40)

 

 

                                                                                    (41)

 

где Сэ1, и Сэ2 — известные эталонные емкости при резонансных частотах ƒp1 и ƒР2 соответственно.

Пусть соотношение частот ƒp1 = K ƒР2, где К — коэффициент — вещественное число. Тогда совместное решение уравнений (40), (41) дает возможность вычислить ранее неизвестные величины параметров L и CL:

 

                                                                                         (42)

 

 

                                                                                         (43)

 

С помощью куметра можно также определять неизвестные параметры R, С, tgδc, подключая измеряемые резистор или конденсатор к зажимам 34.

Погрешности измерения параметров L, С, tgδc, R куметром лежат в пределах 1...5% в зависимости от используемой схемы.

Причинами появления этих погрешностей могут являться: нестабильность генератора, наличие в контуре постороннего сопротивления R0, неточность шкалы конденсатора эталонной емкости Сэ, погрешности измерительных приборов VI, VI, погрешность считывания показаний.

Метод дискретного счета с мостами переменного тока

В методе используется апериодический процесс, возникающий при подключении заряженного конденсатора или катушки индуктивности с протекающим в ней током к образцовому резистору. В первом случае при измерении сопротивления разряд образцового конденсатора проходит через измеряемый резистор. Структурная схема измерителя емкости, реализующая метод дискретного счета, показана на рис.33.

 

Рис.33. Структурная схема измерителя емкости с мостом переменного тока, реализующая метод дискретного счета

 

Перед измерением емкости ключ Кл устанавливается в положении 1 и конденсатор Сх заряжается через ограничительный резистор Rд до значения стабилизированного источника напряжения Е.

В момент начала измерения t1 (рис.34. а) управляющее устройство импульсом управления переключает триггер из состояния 0 в состояние 1, очищает предыдущие показания счетчика импульсов и переводит ключ Кл в положение 2. Конденсатор Сд начинает разряжаться через образцовый резистор Rобр по экспоненциальному закону (рис.34, б), который аналитически описывается выражением

В момент времени t1 единичный импульс Uт с выхода триггера открывает схему совпадения и счетчик начинает счет тактовых импульсов генератора, следующих с некоторой частотой ƒ.

Напряжение Uс подается на один из входов устройства сравнения, ко второму входу которого подводиться напряжение с резистора R2 состоящего из резисторов R1 и R2. Это напряжение определяется выражением:

UR = ER2/ (R, + R2). ( 45)

 

Сопротивления R1 и R2 выбирают так, чтобы при разряде конденсатора уменьшающееся напряжение

напряжению при разряде UR. В момент t2, когда сравниваются эти напряжения, на выходе устройства сравнения возникает импульс Uус, переключающий триггер в исходное состояние, при котором задним фронтом его импульса UT закрывается схема совпадения, и счетчик прекращает счет тактовых импульсов (рис.34, б...д).

 

Рис. 34.Временные диаграммы к схеме рис.33: а- импульсы управления; б- процесс разряда конденсатора; в- сигнал на выходе УС; г- сигнал триггера; д- импульсы на входе счетчика.

Поскольку при t - t2 напряжения Uc= UR и τ = t2- tu то

 

                                                                  (46)

                                                                        (47)

 

Итак, напряжение UR, снимаемое с делителя R1, R2, должно иметь определенное значение, что достигается подбором сопротивлений его резисторов.

При поступлении на счетчик N импульсов

 N=fτ, (48)

 

гдеƒ— частота следования счетных импульсов.

Так как τ = RобрCx, то при фиксированных значениях частоты ƒи сопротивления Ro6p

 

                                                                     (49)

 

где коэффициент К1 =ƒRo6p.

Согласно (49), величина измеряемой емкости прямо пропорциональна числу импульсов N, поступивших на счетчик.

Наличие образцового конденсатора Со6р позволяет аналогичным образом измерить сопротивление резистора:

 Rx= N/(ƒCo5p) = N/K2,                                 (50)

 

где коэффициент К2 = ƒСобр.

Метод дискретного счета, использующий мосты переменного тока, широко применяется при создании цифровых измерителей емкостей и сопротивлений. К достоинствам метода следует отнести, прежде всего, достаточно высокую точность измерений.

Погрешность измерений цифровым методом составляет 0,1...0,2% и зависит в основном от нестабильности сопротивлений резисторов RобР, R1, R2 или конденсатора Собр, нестабильности частоты генератора счетных импульсов, а также неточности срабатывания устройства сравнения.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...