Пример расчёта коэффициентов А и В по данным исследований, проведенных на Тарасовском НГКМ
Рассмотрим методы расчета коэффициентов фильтрационных сопротивлений А и В, на примере исследований скважин проведенных на Тарасовском НГКМ. Для расчетов используем данные исследования скважины №1048. Скважина №1048 находится в фонде эксплуатируемых скважин УКПГ-1. В таблице №7.1 представлены средние рабочие дебиты скважины за 2002 год.
Таблица №7.1 Средние рабочие дебиты скважины №1048 за 2002 год.
Средний дебит скважины на 01.01.02 г. составлял 995 тыс. м3/сут., при коэффициенте продуктивности К=347 м3/(МПа*сут.) и проницаемости k равной 0,4 мкм2. 05.07.2002 г. был проведен капитальный ремонт скважины по устранению не герметичности обсадной колонны. Ремонт проводили с использованием жидкости глушения с большим содержанием солей. В период третьего квартала 2002 года произошло снижение дебита до 720 тыс. м3/сут. Было принято решение провести газогидродинамическое исследование скважины при стационарных режимах фильтрации, с целью определения причины снижения дебита/[6]. Результаты исследований газовой скважины №1048 приведены в приложений №1. В ходе исследования были получены значения таких величин как пластовое давления Рпл, устьевое давление Ру и температура Ту. Зная их можно определить дебит скважины q, забойное давление Рс, величину ΔР2 и значение ΔР2/q, которые нам необходимы при определение коэффициентов А и В. Методика определения выше указанных величин приведена ниже. Обработку результатов исследований скважин начинают с определения дебита скважины. При исследованиях скважин расход газа определяется с помощью диафрагменного измерителя критического течения (ДИКТа). Измеритель критического течения подключается к устью скважины через сепаратор (породоуловитель). Давление Р1 перед диафрагмой измеряется образцовым манометром. Температура газа измеряется термометром.
Расход газа определяется по формуле:
(7.1)
Р1 – давление до диафрагмы, МПа; С – коэффициент расхода, зависящий от диаметра и формы диафрагмы; ρ – относительная плотность газа; Т – температура газа до диафрагмы, К; z – коэффициент сжимаемости газа. Значения коэффициентов С, используемые при измерении дебита газа диафрагменным измерителем критического течения газа при проведении исследования, представлены в таблице №7.2.
Таблица №7.2 Коэффициент С при измерении дебита газа ДИКТом газа/[1].
Коэффициент сверхсжимаемости можно определить по графикам Брауна-Катца, но при проведении данного исследования его определяли по формуле (7,2). Для этого определяем приведенные параметры давления и температуры газовой смеси.
(7.2)
Тпр=Т/Тпкр (7.3) Рпр=Р/Рпкр (7.4)
Псевдокритические параметры смеси Тпкр и Рпкр вычисляются по формулам: (7.5) (7.6)
где yi – молярная доля компонента в смеси; Ркрi и Ткрi – соответственно критические давление и температура i-го компонента смеси; n – число компонентов смеси. Критические давление, температура и молярные доли компонентов в смеси приведены в таблице №7.3/[5].
Таблица №7.3 Данные для определения коэффициента z и ρ
Таблица №7.4. Результаты расчета z и ρ
Расчет коэффициента z проведен с помощью программного приложения Microsoft Excel. Программа, расчет и результаты проведенного расчета представлены в приложении №2 и в таблице №7.4. Относительная плотность газа ρ определяется по формуле:
(7.7)
где ρСМ – плотность смеси, кг/м3; ρВ - плотность воздуха: ρВ=1,292 кг/м3. Плотность смеси определяется по формуле:
(7.8)
где yi – молярная доля компонента в смеси; ρ0.i - плотность i-го компонента смеси при нормальных условиях, кг/м3. Плотности компонентов смеси приведены в таблице №7.3, а результаты расчета плотности смеси и относительной плотности газа в таблице №7.4. Температура газа при исследованиях скважин, как уже отмечалось, измеряется обычными ртутными термометрами, помещенными в струю газа в стальном кожухе. После того как определили дебиты скважины по формуле (7.1) приступают к определению забойного давления. Наиболее надежные данные получают при непосредственном измерении забойных давлений глубинными приборами. Однако, вполне допустимо забойные давления определять по давлению на устье скважины. Так как значения забойного давления были определены по подвижному столбу газа, то:
(7.9)
Рс – давление на забое, МПа; Ру – давление на устье, Мпа; q – дебит скважины, м3/с; θ – учитывает коэффициент гидравлического сопротивления. Давления на устье были измерены с помощью образцовых пружинных манометров. Результаты измерения приведены в приложении №1. Значение величины θ определяется по формуле:
, (7.10)
где λ – определяется по справочникам как функция числа Рейнольдса и относительной шероховатости труб, диапазон изменения λ=0,014 – 0,025; ZСР – определяется по значениям Р и Тна устье скважины и по предполагаемым их значениям на забое;
d – внутренний диаметр фонтанных труб: d=0.168 м.
, (7.11)
ρ – относительная плотность газа; h – глубина скважины до расчетного уровня, м; ZСР – среднее по высоте значение коэффициента сжимаемости газа; ТСР – средняя по скважине температура газа, К. После определения забойного давления находят величину ΔР2 и значение ΔР2/q. Все выше перечисленные величины вычислены с помощью программного приложения Microsoft Excel. Программа, расчет и результаты проведенного расчета представлены на следующей странице и в таблице №7.5. Приведем графический метод определения коэффициентов А и В по данным таблицы №7.5 с помощью программного приложения Microsoft Excel. Проведем обработку результатов исследования, построив зависимость ΔР2/q от q, и с помощью индикаторной кривой определим коэффициенты фильтрационного сопротивления А и В. Таблица №7.5 Результаты исследований газовой скважины №1048
По данным, приведенным в таблице №7.5, можно построить индикаторную кривую (Рис. 5). Отрезок отсекаемый этой кривой на оси ординат равен коэффициенту фильтрационного сопротивления А, а коэффициент В как тангенс угла наклона к оси. Из рис. 5 можно определить, что А=0,0031 и В=0,00000255.
Коэффициент проницаемости k. Известны такие параметры, как ТПЛ = 303 К, коэффициенты несовершенства скважины С1 = 1,3 и С2 = 0,33; коэффициент сверхсжимаемости ZCP = 0,8; радиус скважины rC = 0,1 м; радиус контура питания RK = 500 м; эффективная толщина пласта h = 10 м; вязкость газа в пластовых условиях μПЛ = 0,05 мПа*с. А также ТСТ = 293, РСТ = 0,1013 МПа. Из таблицы №7.5. возьмем значение РПЛ = 6,04 Мпа.
Используя, найденное по рис. 5, значение коэффициента фильтрационного сопротивления А = 0,0031 и воспользовавшись формулой (5.6), найдем значение коэффициента проницаемости k:
=0,212 мкм2. Зная коэффициент проницаемости k мы можем по формуле (5.12) определить коэффициент продуктивности К:
Через коэффициент продуктивности К можно по формуле (5.13) найти коэффициент гидропроводности
В результате проведенных расчетов были определены коэффициент проницаемости k, коэффициент продуктивности К, коэффициент гидропроводности. Как видно из проведенного исследования резко уменьшилась проницаемость пласта (с 0,4 до 0,2 мкм2), что, по-видимому, объясняется проведением капитального ремонта скважины, проводившегося с использованием жидкости глушения, проникновение ее в пласт и обусловило ухудшение фильтрационных характеристик ПЗП, в частности проницаемости/[6]. На основании результатов проведенного исследования сделали вывод, что для востанавления исходного дебита необходимо кислотная обработка ПЗП. Однако данная проблема могла и должна была быть решенной использованием жидкости глушения на основе ПАВ. После проведенных мероприятий было решено провести еще одно исследование с целью определения эффективности принятых мер. Результаты повторного исследования газовой скважины №1048 приведены в приложений №3. В ходе исследования были получены значения таких величин как пластовое давления Рпл, устьевое давление Ру и температура Ту. Зная их можно определить дебит скважины q, забойное давление Рс, величину ΔР2 и значение ΔР2/q, которые нам необходимы при определение коэффициентов А и В. Методика и алгоритм определения выше перечисленных величин такой же, как и при проведении первого исследования. Исходные данные, для определения коэффициента сжимаемости Z изменятся, так как значения температур и давлении будут другими. В таблице №7.6 приведены данные для определения коэффициента сжимаемости Z, а в таблице №7.7 результаты расчета.
Таблица №7.6 Данные для определения коэффициента z и ρ
Таблица №7.7. Результаты расчета z и ρ
Все интересующие нас величины вычислены с помощью программного приложения Microsoft Excel. Программа, расчет и результаты проведенного расчета представлены на следующей странице и в таблице №7.8. Приведем графический метод определения коэффициентов А и В по данным таблицы №7.8 с помощью программного приложения Microsoft Excel. Проведем обработку результатов исследования, построив зависимость ΔР2/q от q, и с помощью индикаторной кривой определим коэффициенты фильтрационного сопротивления А и В. Таблица №7.8 Результаты исследований газовой скважины №1048
Проведем обработку результатов исследования, построив зависимость ΔР2/q от q, и с помощью индикаторной кривой определим коэффициенты фильтрационного сопротивления А и В.
По данным, приведенным в таблице №7.2., была построена индикаторная кривая (Рис. 6). Отрезок отсекаемый этой кривой на оси ординат равен коэффициенту фильтрационного сопротивления А, а коэффициент В как тангенс угла наклона прямой к оси. Из рис. 6 можно примерно определить, что А=0,0027и В=0,00000163. Значения коэффициентов фильтрационных сопротивлений А и В, полученные в результате исследования, проведенного после применения кислотной обработки призабойной зоны пласта, значительно меньше значении, полученных в результате первого исследования. Кроме того, значения коэффициентов проницаемости k, продуктивности К, вычисленные по найденным коэффициентам А и В, соответственно составили 0,45 мкм2 и 357 м3/(МПа*сут.) Следовательно, можно сделать вывод, что меры, принятые для восстановления рабочих дебитов газовой скважины №1048, были эффективны и проведены своевременно, что позволило в дальнейшем не только избежать падения дебита, но и восстановить его значения, до проектных/[6]. Коэффициенты фильтрационных сопротивлений А и В можно также определить с помощью метода наименьших квадратов, о котором было сказано в пункте 3.3. Данный метод является аналитическим и в его основе лежат следующие формулы:
, (7.12) , (7.13) , (7.14)
и – коэффициенты фильтрационного сопротивления; – коэффициент парной корреляции; – число режимов. Расчет коэффициентов фильтрационного сопротивления А и В по методу наименьших квадратов выполнен на ЭВМ с помощью программы представленной в приложений №3. Там же, приведен расчет и показаны результаты, полученные по данным приложения №1 и №2. A=0.00313; B=0.00000245; R=0.977 по данным приложения №1. A=0.0027; B=0.00000164; R=0.963 по данным приложения №2.
Заключение
Важнейшими характеристиками, определяемыми в процессе исследования скважин, являются также максимально допустимые дебиты скважины и факторы, ограничивающие эти дебиты, коэффициенты фильтрационного сопротивления в формуле притока газа к скважине, а также величины свободного и абсолютно свободного дебитов скважин, проницаемость пласта или его гидропроводность. В ходе выполнении курсовой работы были освоены газогидродинамические методы исследования скважин при стационарных режимах фильтрации. Из рассмотренных примеров расчета коэффициентов фильтрационных сопротивлений и сопоставления их с фактическими, следует, что расчеты данной курсовой работы верны. При анализе расчетных данных (коэффициентов фильтрационных сопротивлений А и В), видно, что с годами возрастают. Это ведет к увеличению проницаемости (из анализа формулы 8.4). Другое предположение о возрастание проницаемости – очистка ПЗП в процессе эксплуатации скважины.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|