Работа простого генетического алгоритма
Простой генетический алгоритм случайным образом генерирует начальную популяцию структур. Работа генетического алгоритма представляет собой итерационный процесс, который продолжается до тех пор, пока не выполнятся заданное число поколений или какой-либо иной критерий остановки. На каждом поколении генетического алгоритма реализуется отбор пропорционально приспособленности, одноточечный кроссовер и мутация. Сначала, пропорциональный отбор назначает каждой структуре вероятность Ps(i) равную отношению ее приспособленности к суммарной приспособленности популяции. Затем происходит отбор (с замещением) всех n особей для дальнейшей генетической обработки, согласно величине Ps(i). Простейший пропорциональный отбор - рулетка - отбирает особей с помощью n "запусков" рулетки. Колесо рулетки содержит по одному сектору для каждого члена популяции. Размер i-ого сектора пропорционален соответствующей величине Ps(i). При таком отборе члены популяции с более высокой приспособленностью с большей вероятность будут чаще выбираться, чем особи с низкой приспособленностью. После отбора, n выбранных особей подвергаются кроссоверу (иногда называемому рекомбинацией) с заданной вероятностью Pc. n строк случайным образом разбиваются на n/2 пары. Для каждой пары с вероятность Pc может применяться кроссовер. Соответственно с вероятностью 1-Pc кроссовер не происходит и неизмененные особи переходят на стадию мутации. Если кроссовер происходит, полученные потомки заменяют собой родителей и переходят к мутации. Одноточечный кроссовер работает следующим образом. Сначала, случайным образом выбирается одна из l-1 точек разрыва. (Точка разрыва - участок между соседними битами в строке.) Обе родительские структуры разрываются на два сегмента по этой точке. Затем, соответствующие сегменты различных родителей склеиваются и получаются два генотипа потомков.
Например, предположим, один родитель состоит из 10 нолей, а другой - из 10 единиц. Пусть из 9 возможных точек разрыва выбрана точка 3. Родители и их потомки показаны ниже в табл.1:
Кроссовер Родитель 0000000000 000~0000000 - 111~0000000 1110000000 Потомок 1 1 > Родитель 1111111111 111~1111111 - 000~1111111 0001111111 Потомок 2 - 2 - > Схема 2
После того, как закончится стадия кроссовера, выполняются операторы мутации. В каждой строке, которая подвергается мутации, каждый бит с вероятностью Pm изменяется на противоположный. Популяция, полученная после мутации записывает поверх старой и этим цикл одного поколения завершается. Последующие поколения обрабатываются таким же образом: отбор, кроссовер и мутация. В настоящее время исследователи генетических алгоритмов предлагают много других операторов отбора, кроссовера и мутации. Вот лишь наиболее распространенные из них. Прежде всего, турнирный. Турнирный отбор реализует n турниров, чтобы выбрать n особей. Каждый турнир построен на выборке k элементов из популяции, и выбора лучшей особи среди них. Наиболее распространен турнирный отбор с k=2. Элитные методы отбора гарантируют, что при отборе обязательно будут выживать лучший или лучшие члены популяции совокупности. Наиболее распространена процедура обязательного сохранения только одной лучшей особи, если она не прошла как другие через процесс отбора, кроссовера и мутации. Элитизм может быть внедрен практически в любой стандартный метод отбора.
Двухточечный кроссовер и равномерный кроссовер - вполне достойные альтернативы одноточечному оператору. В двухточечном кроссовере выбираются две точки разрыва, и родительские хромосомы обмениваются сегментом, который находится между двумя этими точками. В равномерном кроссовере, каждый бит первого родителя наследуется первым потомком с заданной вероятностью; в противном случае этот бит передается второму потомку. И наоборот.
Шима (schema)
Хотя внешне кажется, что генетический алгоритм обрабатывает строки, на самом деле при этом неявно происходит обработка шим, которые представляют шаблоны подобия между строками. Генетический алгоритм практически не может заниматься полным перебором всех точек в пространстве поиска. Однако он может производить выборку значительного числа гиперплоскостей в областях поиска с высокой приспособленностью. Каждая такая гиперплоскость соответствует множеству похожих строк с высокой приспособленностью. Шима - это строка длины l (что и длина любой строки популяции), состоящая из знаков алфавита {0; 1; *}, где {*} - неопределенный символ. Каждая шима определяет множество всех бинарных строк длины l, имеющих в соответствующих позициях либо 0, либо 1, в зависимости от того, какой бит находится в соответствующей позиции самой шимы.. Например, шима, 10**1, определяет собой множество из четырех пятибитовых строк {10001; 10011; 10101; 10111}. У шим выделяют два свойства - порядок и определенная длина. Порядок шимы - это число определенных битов ("0" или "1") в шиме. Определенная длина - расстояние между крайними определенными битами в шиме. Например, вышеупомянутая шима имеет порядок o(10**1) = 3, а определенная длина d(10**1) = 4. Каждая строка в популяции является примером шим.
Строящие блоки Строящие блоки - это шимы обладающие: - высокой приспособленностью, - низким порядком, - короткой определенной длиной.
Приспособленность шимы определяется как среднее приспособленностей примеров, которые ее содержат. После процедуры отбора остаются только строки с более высокой приспособленностью. Следовательно строки, которые являются примерами шим с высокой приспособленностью, выбираются чаще. Кроссовер реже разрушает шимы с более короткой определенной длиной, а мутация реже разрушает шимы с низким порядком. Поэтому, такие шимы имеют больше шансов переходить из поколения в поколение. Голланд показал, что, в то время как генетический алгоритм явным образом обрабатывает n строк на каждом поколении, в тоже время неявно обрабатываются порядка таких коротких шим низкого порядка и с высокой приспособленностью (полезных шим, "useful schemata"). Он называл это явление неявным параллелизмом. Для решения реальных задач, присутствие неявного параллелизма означает, что большая популяция имеет больше возможностей локализовать решение экспоненциально быстрее популяции с меньшим числом особей.
Теорема шим Простой экспоненциально увеличивает число примеров полезных шим или строящих блоков. Доказательством этого служит следующая теорема, известная как "теорема шим". Пусть m(H,t) - число примеров шимы H в t-ом поколении. Вычислим ожидаемое число примеров H в следующем поколении или m(H,t+1) в терминах m(H,t). Простой генетический алгоритм каждой строке ставит в соответствие вероятность ее "выживания" при отборе пропорционально ее приспособленности. Ожидается, что шима H может быть выбрана m(H,t)Ч (f(H)/fср.) раз, где fср. - средняя приспособленность популяции, а f(H) - средняя приспособленность тех строк в популяции, которые являются примерами H. Вероятность того, что одноточечный кроссовер разрушит шиму равна вероятности того, что точка разрыва попадет между определенными битами. Вероятность же того, что H "переживает" кроссовер не меньше 1-Pc_ (d(H)/l-1). Эта вероятность - неравенство, поскольку шима сможет выжить если в кроссовере участвовал также пример похожей шимы. Вероятность того, что H переживет мутацию - (1-Pm) o(H), это выражение можно аппроксимировать как (1-o(H)) для малого Pm и o(H). Произведение ожидаемого число отборов и вероятностей выживания известно как теорема шим (3):
m (H, t+1) (3)
Теорема шим показывает, что строящие блоки растут по экспоненте, в то время шимы с приспособленностью ниже средней распадаются с той же скоростью. В своих исследованиях теоремы шим Goldberg выдвигает гипотезу строящих блоков, которая состоит в том, что "строящие блоки объединяются, чтобы сформировать лучшие строки". То есть рекомбинация и экспоненциальный рост строящих блоков ведет к формированию лучших строящих блоков. В то время как теорема шим предсказывает рост примеров хороших шим, сама теорема весьма упрощенно описывает поведение генетических алгоритмов. Прежде всего, f(H) и fср. не остаются постоянными от поколения к поколению. Приспособленности членов популяции знаменательно изменяются уже после нескольких первых поколений. Во-вторых, теорема шим объясняет потери шим, но не появление новых. Новые шимы часто создаются кроссовером и мутацией. Кроме того, по мере эволюции, члены популяции становятся все более и более похожими друг на друга так, что разрушенные шимы будут сразу же восстановлены. Наконец, доказательство теоремы шим построено на элементах теории вероятности и следовательно не учитывает разброс значений, в многих интересных задачах, разброс значений приспособленности шимы может быть достаточно велик, делая процесс формирования шим очень сложным. Существенная разница приспособленности шимы может привести к сходимости к неоптимальному решению. Несмотря на простоту, теорема шим описывает несколько важных аспектов поведения генетических алгоритмов. Мутации с большей вероятностью разрушают шимы высокого порядка, в то время как кроссовера с большей вероятность разрушают шимы с большей определенной длиной. Когда происходит отбор, популяция сходится пропорционально отношению приспособленности лучшей особи, к средней приспособленности в популяции; это отношение - мера давления отбора. Увеличение или Pc, или Pм., или уменьшении давления отбора, ведет к увеличенному осуществлению выборки или исследованию пространства поиска, но не позволяет использовать все хорошие шимы, которыми располагает генетический алгоритм. Уменьшение или Pc, или Pм., или увеличение давления выбора, ведет к улучшению использования найденных шим, но тормозит исследование пространства в поисках новых хороших шим. Генетический алгоритм должен поддержать тонкое равновесие между тем и другим, что обычно известно как проблема "баланса исследования и использования". Некоторые исследователи критиковали обычно быструю сходимость генетического алгоритма, заявляя, что испытание огромных количеств перекрывающихся шим требует большей выборки и более медленной, более управляемой сходимости. В то время как увеличить выборку шим можно увеличив размер популяции, методология управления сходимость простого генетического алгоритма до сих пор не выработана.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|