Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Наследование групп крови системы ав0

Группа крови системы АВО (читается как «а, б, ноль») контролируется одним аутосомным геном, т.е. геном, расположенным в одной из аутосомных (не половых) хромосом. Локус этого гена обозначается латинской буквой I (от слова «изогемагглютиноген»), а его три аллеля 1 , 1  и 1  обозначаются для краткости, как А, В и 0. Аллели А и В — кодоминантны по отношению друг к другу, и оба доминантны по отношению к аллелю 0. При сочетании различных аллелей могут образоваться 4 группы крови, различающихся между собой иммунологическими свойствами как эритро-

Генотип

Фенотип

Группа крови Антитела сыворотки
I  I 0(I)
I  I A(II)
I  I A(II)
I  I B(III)
I  I B(III)
I  I AB(IV) 0

Связь между генотипом и фенотипом групп крови системы АВ0

цитов, так и сыворотки (табл. V.1). Эритроциты содержат антигены (агтлютиногены), а в сыворотке находится вещество агглютинин (от лат. agglutinatio — склеивание), называемое антителом.

Определение групповой принадлежности человека по систе­ме АВ0 осуществляется при проведении реакции агглютинации (рис. V.3).

 

Рис. V.3. Взаимодействие эритроцитов индивидов с группами крови 0, А, В и АВ с антителами сыворотки (анти-А и анти-В).

 

Знать групповую принадлежность крови человека — необходимое условие безопасного проведения переливания крови. Термин «универсальный донор» обозначает лицо с 0(I) группой крови, так как его эритроциты не могут быть агглютинированы сывороткой ни одного реципиента. «Универсальный реципиент» — индивид с AB(IV) группой крови, сыворотка которого не может агглютинировать эритроциты какого-либо донора.

Полигибридные скрещивания

Основные закономерности, открытые Г.Менделем, касались наследования и расщепления только по одной паре альтернативных признаков (при моногибридном скрещивании). На следующем этапе Менделя интересовал вопрос, какими признаками будет обладать потомство от скрещивания родительских форм, различающихся одновременно несколькими признаками.

Гибриды, полученные от скрещивания особей, различающихся одновременно по двум парам альтернативных признаков, носят название дигибридов. Рассмотрим результаты классического опыта Менделя по дигибридному скрещиванию.

Для скрещивания были отобраны растения, которые имели гладкие желтые горошины (оба признака доминантные), и растения с морщинистыми зелеными горошинами (оба признака рецессивные). Согласно первому закону все потомство было единообразно: дигибридные растения давали только гладкие желтые семена. В потомстве от самоопыления 15 дигибридных растений было получено 556 горошин: из них 315 гладких желтых, 108 гладких зеленых, 101 морщинистых желтых и 32 горошины были морщинистые зеленые. Это соотношение близко к соотношению 9:3:3:1 и отражает относительные частоты 4 классов фенотипов.

При анализе по каждому признаку в отдельности (только по форме или только по окраске) расщепление гибридов в F  соответствовало соотношению 3:1.

Проследим расщепление по признаку формы семян. Гладких горошин было 315 + 108, что составило в сумме 423 гладких. Морщинистых горошин было 101 + 32, что составило 133 семян. Отношение 423 к 133 было близко к уже известному отношению 3:1. То же самое отношение было получено при анализе расщепления по признаку окраски. Желтых горошин вне зависимости от их формы было 416 (315 + 101), а количество зеленых составило 140 горошин (108 + 32). Отношение также близко к 3:1.

Полученные результаты свидетельствовали, что расщепление по каждой паре аллелей при дигибридном скрещивании происходит как два независимых события. Таким образом, соотношение фенотипов при дигибридном скрещивании представляет собой результат случайного или независимого объединения результатов двух моногибридных скрещиваний. Этот вывод отражает сущность третьего закона Менделя — закона независимого комбинирования генов.

Обозначив доминантный аллель, определяющий желтую окраску, буквой А и рецессивный аллель, определяющий зеленую окраску, буквой а, буквой В — доминантный аллель, контролирующий развитие гладкой формы горошины, и соответственно рецессивный аллель, контролирующий развитие морщинистой формы, буквой b, дигибридное скрещивание можно записать следующим образом (рис. V.4).

Для того чтобы представить фенотипические и генотипические классы потомков дигибридов первого поколения, воспользуемся так называемой решеткой Пеннета, которая позволяет установить все возможные сочетания мужских и женских гамет (табл. V.2).

Легко убедиться, что 9 из 16 (т.е. 9/16) теоретически ожидаемых потомков имеют одновременно два доминантных признака (желтые гладкие горошины — жг); 3/16 — доминантный и рецессивный признак (желтые морщинистые — жм); 3/16 — рецессивный и доминантный признаки (зеленые гладкие — зг) и 1/16 часть потомков имеет одновременно два рецессивных признака (зеленые и морщинистые — зм).

При анализе генотипов по решетке Пеннета мы обнаруживаем 9 различных классов в соотношении 1: 2: 2: 4: 1: 2: 1: 2: 1.

Расщепление в дигибридном скрещивании в F  по фенотипу и генотипу можно получить, перемножая относительные частоты отдельных фенотипов или отдельных генотипов, поскольку гены, контролирующие развитие различных признаков, наследовались независимо друг от друга. По каждому из независимых признаков (окраска горошин и характеристика их поверхности) отношение частот, как было ранее показано, составляет 3:1. Тогда, перемножая (Зж:1з) на (Зг:1м), получаем 9жг: 3жм: 3зг: 1зм, что точно соответствует данным решетки Пеннета.

Рис. V.4. Схема дигибридного скрещивания.

Гибриды первого поколения единообразны как по фенотипу, так и по генотипу. Они образуют гаметы четырех различных типов — АВ, Ab, aB, ab

Таблица V.2

Расщепление по фенотипу и генотипу в F2 при дигибридном скрещивании:

 

 

Таблица V.3

Соотношение фенотипических и генотипических классов во втором поколении при моно-, ди-, три- и полигибридном скрещивании:

Зная, что при моногибридном скрещивании расщепление по генотипу соответствует 1АА: 2Аа: 1аа для одной пары и 1BB: 2Bb: 1bb для другой, можно подсчитать частоты, или вероятности, генотипов различных классов. Вероятности генотипов соответствуют: АА – ¼, Аа – ½, аа - ¼, ВВ – ¼, Вb – ½, bb – ¼. Например, относительная частота генотипа ААВВ рассчитывается путем перемножения вероятностей ¼АА х ¼BB = 1/16AABB, для ААВЬ — ¼AA х ½Вb = 1/8 или 2/16, ААВЬ. Тем же путем получаем распределение всех остальных различающихся по генетической конституции классов особей в отношении 1: 2: 2: 4: 1: 2: 1: 2: 1, что также полностью соответствует данным решетки Пеннета.

Поступая аналогичным образом, можно представить результаты расщепления по фенотипу и генотипу для тригибридного скрещивания, когда родительские формы различаются по трем независимым признакам и в F , образуются тригибриды. Эксперименты показывают, что при тригибридном скрещивании расщепление в F  по фенотипу дает 8 различных классов особей в соотношении 27:9:9:9:3:3:3:1, а расщепление по генотипу дает 27 различных классов.

Подобным образом возможен расчет вероятностей фенотипических и генотипических классов для любого полигибридного скрещивания (табл. V.3).

В общем виде эти соотношения можно выразить простыми формулами: число фенотипических классов равно 2 , где «2» отражает парность аллелей, а показатель степени «n» — число независимых генов. Число генотипических классов равно З , где основание степени «3» — число генотипических классов при моногибридном скрещивании, а показатель степени «n» — число генов.

Очевидно, что в основе приведенных формул лежат закономерности моногибридного скрещивания. Они справедливы для любого числа генов, но не превышающих гаплоидное число n.

Важно отметить, что закономерности, открытые Менделем, реализуются при анализе большого количества особей, поскольку малое количество в потомстве гибридов (например, дети одной семьи) может давать отклонения от точного соотношения ожидаемых классов расщепления в силу случайных событий.

Гибридологический анализ, разработанный Менделем, и результаты, полученные на его основе, заложили концепцию фундаментального понятия генетики и биологии в целом — понятие гена. В последние десятилетия XIXв. были обнаружены хромосомы, описаны митотическое и мейотическое деления клетки. Тем не менее не были известны материальные носители наследственной информации. Только после того как законы Менделя были открыты вновь в 1900г., сопоставление менделевского расщепления признаков и распределения хромосом в мейозе позволило сделать окончательный вывод о том, что именно хромосомы являются носителями генетической информации. Этими событиями ознаменовалось начало нового научного периода развития генетики, а наблюдения и выводы Менделя и в настоящее время составляют важнейшую главу учения о наследственности и изменчивости.

Взаимодействие генов

Описано несколько типов взаимодействия неаллельных генов: комплементарность, эпистаз и полимерия.

Комплементарность — взаимодействие неаллельных генов, ко­торые обусловливают развитие нового признака, отсутствующего у родителей. Примером комплементарного действия у человека могут служить случаи, когда у глухих родителей рождаются дети с нор­мальным слухом.

Развитие нормального слуха находится под генетическим конт­ролем десятков различных неаллельных генов, гомозиготное ре­цессивное состояние одного из которых может приводить к одной из форм наследственной глухоты. Таких форм у человека известно более 30. Если один из родителей является гомозиготой по рецес­сивному гену аа (рис. V.5), а другой — гомозиготой по другому рецессивному гену bb, то все их дети будут двойными гетерозиготами и, следовательно, слышащими, поскольку доминантные ал­лели будут взаимно дополнять друг друга (см. рис. V.5). Таким обра­зом формируется новый по отношению к родителям признак — нормальный слух.

Эпистаз (от греч. epi — над + stasis — препятствие) — взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллельного гена. Подавляющий ген называется геном-супрессором, а подавляемый — гипостатическим геном. По-видимому, действие гена-супрессора на подавляемый ген сходно с принципом доминантность — рецессивность. Но существенное различие заключается в том, что эти гены не являются аллельными, т.е. расположены в негомологичных хромосомах или занимают различные локусы в гомоло-

Рис. V.5. Схема, поясняющая возможность рождения детей с нормальным слухом у глухих родителей с различными генетическими формами глухоты.

 

гичных. Различают доминантный и рецессивный эпистаз. При доминантном эпистазе доминантный аллель гена-супрессора подавляет проявление доминантного аллеля другого гипостатического гена. При рецессивном эпистазе, или криптомерии, рецессивный аллель гена-супрессора, будучи в гомозиготном состоянии, не дает проявиться доминантной или рецессивным аллелям других генов.

Примером рецессивного эпистаза у человека может служить так называемый бомбейский фенотип, когда индивид, имеющий доминантный аллель группы крови системы АВ0 (например, аллель В, определяющий принадлежность человека к III или IV группе), идентифицируется в реакции агглютинации как человек с 0(I). Это состояние возникает в результате того, что данный индивид является рецессивной гомозиготой (hh) по другой, нежели система АВ0, генетической системе Hh. Для реализации аллелей I  и I  необходимо присутствие хотя бы одного доминантного аллеля Н.

Полимерия (от греч. polys — много + meros — часть) — вид взаимодействия, когда эффекты нескольких неаллельных генов, определяющих один и тот же признак, примерно одинаковы. Подобные признаки получили название количественных, или полимерных признаков. Как правило, степень проявления полимерных признаков зависит от числа доминантных генов. Наследование полимерных признаков было впервые описано шведским генетиком Г. Нильсон-Эле в 1908 г. Проводя скрещивание различных форм пшеницы (с красными и белыми зернами), он наблюдал расщепление в F  признака окраски в отношении: 15/16 окрашенных и 1/16 белых. Среди окрашенных зерен он наблюдал все переходы — от интенсивно окрашенных до слабо окрашенных.

Анализ особенностей расщепления показал, что в данном случае окраску зерен определяют два доминантных аллеля двух различных генов, а сочетания их рецессивных аллелей определяют отсутствие окраски. Поскольку полимерные гены имеют однонаправленное действие, их, как правило, обозначают одинаковыми буквами. Таким образом, исходные родительские формы имели генотипы A A A A  и a a a a . Наличие всех четырех доминантных аллелей определяло самую интенсивную окраску, трех доминантных аллелей (типа A A A a ) — менее интенсивную окраску и т.д.

Примером полимерного наследования у человека является наследование окраски кожных покровов. В браке индивида негроидной расы (коренного жителя Африки) с черной окраской кожи и представителем европеоидной расы с белой кожей дети рождаются с промежуточным цветом кожи (мулаты). В браке двух мулатов потомки могут обладать любой окраской кожи: от черной до белой, поскольку пигментация кожи обусловлена действием трех или четырех неаллельных генов. Влияние каждого из этих генов на окраску кожи примерно одинаково.

Полимерное наследование характерно для так называемых количественных признаков, таких, как рост, вес, окраска кожных покровов, скорость протекания биохимических реакций, артериальное давление, содержание сахара в крови, особенности нервной системы, уровень интеллекта, и многих других, которые нельзя разложить на четкие фенотипические классы. Чем большее число неаллельных генов контролируют развитие количественного признака, тем менее заметны переходы между фенотипическими классами.

Неменделевская генетика.

Гениальность законов Менделя заключается в их простоте. Строгая и элегантная модель, построенная на основе этих законов, служила генетикам точкой отчета на протяжении многих лет. Однако в ходе дальнейших исследований выяснилось, что законам Менделя подчиняются только относительно немногие генетически контролируемые признаки. Оказалось, что у человека большинство и нормальных, и патологических признаков детерминируются иными генетическими механизмами, которые стали обозначать термином «неменделевская генетика». Таких механизмов существует множество: хромосомные аберрации (синдром Дауна); наследование, сцепленное с полом (цветовая слепота); импринтинг (синдромы Прадера—Вилли, Энгельмана); появление новых мутаций (развитие раковых заболеваний); экспансия (инсерция) повторяющихся нуклеотидных последовательностей (миотоническая дистрофия); наследование количественных признаков (сложные поведенческие характеристики).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...