Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формирование сети синхронизации

 

Проблема синхронизации сетей SDH, с одной стороны, является частью общей проблемы синхронизации цифровых сетей (ИКМ и PDH). С другой стороны, SDH привносит свои дополнительные проблемы, вызванные использованием указателей и наличием плавающего режима размещения контейнеров в поле полезной нагрузки, что приводит фактически к определенной асинхронности его транспортировки. Последняя делает невозможным использование выделенного при демультиплексировании STM-N 2 Мбит/с потока для целей синхронизации. Однако технология SDH предлагает и свои специфические методы решения проблем синхронизации.

Если цифровая сеть локальна, то для нее проблемы синхронизации отсутствуют и в разумных пределах фактически не зависят от точности общего источника синхронизации. Проблема синхронизации возникает при объединении таких сетей в одну сложную сеть. Для ее синхронизации нужно предусмотреть, чтобы источники тактовой синхронизации отдельных сетей были одинаковыми и высокостабильными или была построена сеть синхронизации с единым высокостабильным источником тактовой синхронизации.

Синхронизация сетей PDH и SDH отличается своей спецификой. Целостность синхронизации сети PDH основана на использовании той же схемы иерархической принудительной синхронизации (по схеме «ведущий-ведомый»). В ней прохождение сигналов таймеров через узлы сети прозрачно, так как фазы сигналов Е1, используемых для синхронизации, жестко привязаны к фрейму PDH.

В сети SDH, восстанавливающей в каждом узле сигнал таймера из линейного сигнала STM-N, такая прозрачность теряется, а сигнал Е1, восстановленный из сигнала STM-N, для целей синхронизации не используется. В этой ситуации целостность синхронизации сети SDH лучше поддерживается при использовании распределенных первичных эталонных источников PRS, что позволяет устранить эффекты "каскадирования сигналов таймеров".

Внедрение сетей SDH, использующих наряду с привычной топологией точка-точка, кольцевую и ячеистую топологии, привнесло дополнительную сложность в решение проблем синхронизации, так как для двух последних топологий маршруты сигналов могут меняться в процессе функционирования сетей.

Сети SDH имеют несколько дублирующих источников синхронизации, которые можно разделить на два класса: внешние и внутренние.

Внешняя синхронизация:

- сигнал внешнего сетевого таймера, или первичный эталонный таймер PRC, определяемый в рекомендации ITU-T G.811, т.е. сигнал с частотой 2048 кГц;

- сигнал с трибного интерфейса канала доступа, определяемый в рекомендации ITU-T G.812, сигнал с частотой 2048 кГц, выделяемый из первичного потока 2048 кбит/с;

- линейный сигнал STM-N, или линейный таймер, сигнал 2048 кГц, выделяемый из линейного сигнала 155,52 Мбит/с или 4n x 155,52 Мбит/с.

Внутренняя синхронизация:

- сигнал внутреннего таймера (рассматриваемый как таймер ведомого локального узла LNC), определяемый в рекомендации ITU-T G.813, сигнал 2048 кГц;

Что касается точности сигналов внешней синхронизации, то она соответствует стандартам G.811, G.812. Точность сигналов внутренней синхронизации регламентируется производителями и для мультиплексоров SDH составляет обычно 4,6-10".

Учитывая, что трибы 2 Мбит/с, пришедшие из сетей SDH, отображаются в VC-12 и могут плавать в рамках структуры вложенных контейнеров, использующих указатели, их сигналы должны быть исключены из схемы синхронизации сети SDH. Реализуемая точность внутреннего таймера мала и, учитывая возможность накапливания ошибки в процессе так называемого "каскадирования сигналов таймеров", когда узел сети восстанавливает сигнал таймера по принятому сигналу и передает его следующему узлу, может быть использована только локально. В этом смысле наиболее надежными источниками синхронизации являются сигнал внешнего сетевого таймера и линейный сигнал STM-N.

Предусмотрено четыре режима работы хронирующих источников узлов синхронизации: первый - PRC, используется в мастер-узлах, второй - SRC, используется в тран­зитных и/или местных узлах, третий и четвертый также используются в транзитных и/или мест­ных узлах.

Учитывая наличие нескольких режимов, а также факт трансляции (распространения) сиг­нала синхронизации, системы управления должны иметь возможность с одной стороны переклю­чать эти режимы, а с другой - иметь показатель, на основе которого можно было бы принять ре­шение о необходимости такого переключения.

Организации ITU-T и ETSI предложили использовать в качестве такого показателя понятие уровень качества хронирующего источника. Этот уровень может быть передан в виде сообщения о статусе синхронизацииSSM. Для систем PDH это реализуется последовательностью резервных бит в мультифрейме Е1, для систем SDH это реализуется через заголовок фрейма STM-N, в котором резер­вируются под эти цели биты 5-8 байта синхронизации S1. В обоих случаях при сбое в сети, узел сети, ответственный за распространение SSM, имеет возможность послать сообщение системе управления о необходимости использования альтернативного сигнала синхронизации.

Основным требованием при формировании сети синхронизации является наличие основных и резервных путей распространения сигнала синхронизации. Однако и в том, и в другом случае должна строго выдерживаться топология иерархического дерева и отсутствовать замкнутые петли синхронизации.

Другим требованием является наличие альтернативных хронирующих источников. Идеальной является ситуация, когда альтернативные источники проранжированы в соответствии с их приоритетом и статусом.

При аккуратном формировании сетевой синхронизации можно избежать возникновения замкнутых петель синхронизации, как в кольцевых, так и в ячеистых сетях. Использование сообщений о статусе синхронизации позволяет в свою очередь повысить надежность функционирования сетей синхронизации [2].

Схема синхронизации приведена на рисунке 5.2. Она содержит один первичный источник синхронизации PRC (узел А) и один вторичный источник в транзитном узле В (G.812). Система управления переключается между этими источниками синхронизации, основываясь на качестве хронирующего источника. Сообщения о статусе синхронизации SSM для систем SDH реализуется через заголовок фрейма STM-N, в котором резервируются под эти цели биты 5-8 байта синхронизации S1. При сбое в сети, узел сети, ответственный за распространение SSM, имеет возможность послать сообщение системе управления о необходимости использования альтернативного сигнала синхронизации.

Сплошными линиями показаны цепи первичной синхронизации, штриховыми – цепи вторичной синхронизации.

Списки источников синхронизации, выбираемых по номеру приоритета для каждого узла, приведены в таблице 5.2.

 

Таблица 5.2 - Приоритетные источники синхронизации

А В С С1 D D1
1. Внешний источник синхронизации PRC 1. Слот 7  STM-4 1. Слот 7 STM-4 1. Слот 5 4STM-1 1. Слот 7    STM-4 1. Слот 5 от 4STM-1
2. Слот 7 STM-4 2. Внешний G.812 2. Слот 6 STM-4 2. Слот 6 STM-4 2. Слот 6 STM-4 2. Слот 6 STM-4
3. Внутренний 3. Внутренний 3. Внутренний 3. Внутренний 3. Внутренний 3. Внутренний
E

F

1. Слот 6 STM-4

1. Слот 6 от

 STM-4

2. Слот 7  STM-4

2. Слот 7

 STM-4

3. Внутренний

3. Внутренний

 

Рисунок 5.2 – Схема первичной и вторичной синхронизации


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...