Пространство товаров и система предпочтений
Одним из основных элементов — участников экономики — является домашнее хозяйство, определяемое как некоторая группа индивидуумов, выступающая как единое целое, распределяющая свой доход на покупку и потребление товаров и услуг. В общем, участник экономики, рассматриваемый с этой точки зрения, называется потребителем. Проблема рационального поведения потребителя заключается в решении вопроса о том, какие количества товаров или услуг он хочет и может приобрести при заданных ценах и его доходе. Специально отметим, что существуют разные точки зрения на роль индивидов-потребителей. В неоклассической экономической теории эта роль является основной, определяющей. Вся остальная экономика вырастает из желаний и потребностей такого индивида. Выше была сформулирована аксиома потребителя, полностью описывающая его поведение в вопросах потребления. Эта аксиома чрезвычайно упрощает анализ поведения потребителя. Выбор потребителем некоторого набора товаров во многом зависит от его вкусов, желаний. Запись y ≤ x означает, что потребитель предпочитает набор x набору y или не делает между ними различий, запись x ~ y – оба набора обладают одинаковой степенью предпочтения. Потребуем выполнение следующих аксиом: 1) x ≥ x, для любого x (рефлексивность); 2) если x ≥ y, y ≥ z, то х ≥ z (транзитивность); 3) для любой пары x, y либо x ≥ y, либо y ≥ x, либо и то и другое. Кроме аксиом 1 – 3 на отношение предпочтения накладывают ряд других ограничений, главными из которых являются непрерывность и ненасыщаемость. Отношение предпочтения f называется непрерывным на множестве Х, если множество { (x,y) | x ≥ y } является открытым подмножеством декартова произведения X × X, т.е. если набор товаров x0 строго предпочтительнее набора y0, то при малом изменении каждого из этих наборов отношение строгого предпочтения сохраняется.
Точкой насыщения называется наиболее предпочтительный набор х ∈ Х, т.е. такой, что x ≥ y для всех х ∈ Х. Если Х не содержит точки насыщения, то говорят, что имеет место ненасыщаемости, то х > у (ненасыщаемость: больший набор всегда предпочтительнее меньшего). На непрерывном множестве потребительских наборов можно задать числовую функцию u(x). Функция u(x), определенная на множестве Х, называется функцией полезности, соответствующей отношению предпочтения f, если u(х) ≥ u(у) тогда и только тогда, когда x f y. Для каждого потребителя такое представление многовариантно. Математики называют отношение рефлексивным, если X < X для всякого X; симметричным, если X < Y влечет, что и Y < X; транзитивным, если X < Y и Y < Z влечет X < Z; совершенным (или полным), если для любых двух наборов X, Y либо X <Y, либо Y <Х. Аксиома. 1) Отношение слабого предпочтения рефлексивно, транзитивно и совершенно; 2) Отношение равноценности рефлексивно, симметрично и транзитивно; 3) Отношение предпочтения транзитивно; 4) Для любого X ∈ С множество предпочтительности РX= {Y:X < Y) выпукло; 5) Каждый товар желателен для индивида: если X ≤ Y, то и X ≤ Y, а если к тому же Х ≠ Y (т.е. хi <yi для некоторого i), то Х< Y. Подчеркнем, что это именно аксиома, выражающая фундаментальные свойства системы предпочтений индивида, вообще говоря, живого человека. Что касается рефлексивности и совершенности, то они представляются вполне понятными. Ведь рефлексивность означает, что любой набор товаров равноценен сам себе. А совершенность означает, что индивид в состоянии сравнить по привлекательности любые два набора товаров. Пятое свойство также понятно и в разъяснениях не нуждается.
Какой смысл в четвертом свойстве системы предпочтений? Выпуклость означает, что лучше иметь комбинацию товаров, пусть в меньших количествах, чем просто только какой-то один из этих товаров (лучше иметь немножко соли, сахара, кофе, хлеба, чем одну только соль, один сахар, кофе, хлеб, хотя бы и в большем количестве). Свойство транзитивности, которым обладают отношения предпочтения и слабого предпочтения, не совсем очевидно, не очень наглядно и не сразу осознается потребителем, но если ему объяснить, что получится, если его система предпочтений не транзитивна, то он согласится, что свойство транзитивности должно быть, и произведет необходимую переоценку привлекательности для него тех или иных наборов товаров.
Потребительская корзина
Положение каждого потребителя с точки зрения наличия у него товаров, мы можем выразить с помощью потребительской корзины. В каждый данный момент времени потребителю доступно конечное число товаров, причем потребление некоторых из них должно быть не на нулевом уровне. – индекс товаров. – индекс потребителя. – количество товаров вида j в системе (запас блага j в системе). – количество товара вида j, находящегося в распоряжении потребителя под номером k. – условие частной собственности (нет ничейных товаров). – векторная величина; набор потребительских товаров у потребителя k.Некоторые значения могут быть равны 0 (нет товаров).
N=3
Получаем аналог N-мерного пространства, его положительную часть. Любой точке этого пространства соответствует некий товарный набор. Все возможные товарные наборы, взятые вместе, образуют это пространство – пространство благ. Наша задача: для отдельно взятого потребителя научиться определять полезность каждого набора благ. В идеале, хорошо было бы иметь некоторую функцию, где вместо аргументов было бы количество благ. Подставляя в нее реальные значения, мы получили бы индекс полезности, с помощью которого могли бы сравнить любые наборы благ. Для большинства утверждений мы можем рассматривать товарное пространство на плоскости.
Q1min, Q2min – минимально необходимый набор благ. B≥A; D≥B; D≥A; C≥A; D≥C; B? С – основная проблема.
Заключение
Понятие пространства товара является важнейшим в курсе математической экономики и, как мы указали, означает множество наборов товаров. Набор товаров можно трактовать, как корзину, в которой лежат эти товары в соответствующем количестве. Неотделимо от этого понятия следует также понятие цены, означающей себестоимость товара + набавки. Цена устанавливается на каждый товар индивидуально и определяет спрос и предложение на товар. Из этих основополагающих понятий исходят и другие важные понятия математической экономики, такие как бюджетное множество, система предпочтений, функция полезности и т.д…, которые более подробно будут рассмотрены в других работах. Список использованной литературы
1. В. И. Малыхин «Математика в экономике». Издательство: Инфра-М 2000 2. «Математика в экономике. Основы экономического анализа.». УСЭИ, Челябинск 2001. Составители: Забейворота В.И., Иванова В.Н., Завьялов В.Г. 3. Колемаев В.А. «Математическая экономика». Издательство: Юнити, 1998. 4. Ланкастер К «Математическая экономика». М., 1979. 5. Лифшиц А.Я. «Введение в рыночную экономику», M., 1991 6. «Введение в математический анализ.Учебное пособие по математике для студентов всех специальностей заочной формы обучения», ГТУ 2007. 7. Н. Н. Данилов «Курс математической экономики». Издательство: Высшая школа, 2006 г. 8. ru.wikipedia.org – Википедия свободная энциклопедия 9. http://mylearn.ru/kurs/29 - Математически модели в экономике 10. http://www.mathematica.ru [1] ГОСТ Р 51303-99: «Товар — любая вещь, не ограниченная в обороте, свободно отчуждаемая и переходящая от одного лица к другому по договору купли-продажи.»
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|