Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расчет параметров прямого канала

 

Определим необходимую скорость передачи данных по каналу связи при условии, что объем служебной информации за сеанс не превысит 8%:

V = (1,08×In)/Тcc = (1,08×20×1024) / 72 = 307 (бит/с) (3.1.1)

где In – объем информации, подлежащий передаче потребителю, за сеанс;

Tcc – время сеанса связи (время передачи);

Выбираем из ряда скоростей скорость 600 бит/с.

Согласно рекомендации МККТТ V.22 и V.22 бис при разработке УПС для полудуплексной передачи со скоростью 600 бит/с по коммутируемым телефонным сетям общего пользования предусмотрено частотное разделение канала тональной частоты путем деления на два подканала при использовании частотной модуляции. Так физическая реализация частотных модуляторов и демодулятор несложная, а при данной скорости передачи частотная модуляция обеспечивает достаточно высокую помехоустойчивость, то модуляцию данных для передачи в канал будем осуществлять именно этим способом. Обратный канал можно использовать для исправления ошибок при применении системы с решающей обратной связью.

Определяем эффективную скорость передачи

Vэф = Iп / Tсс = 20×1024 / 72 = 284 (бит/с) (3.1.2)

Средняя частота прямого канала составляет Fср=1500 Гц (УПС -1,2 ТЧ/ТФ-ПД) [7]. Девиация частоты Dw = +200 Гц и Dw=-200 Гц.

Частота передачи двоичной единицы для прямого канала f1= 1300 Гц, а частота передачи двоичного нуля f0= 1700 Гц (справочные данные).

Допустимое отклонение характеристических частот номинального значения для прямого канала ±10 Гц.

Определим длительность единичных элементов t0:

V=(log 2 mс)/t0, (3.1.3)

где mс – количество позиций сигнала.

При ЧМ применяется двухпозиционный сигнал, следовательно mс = 2, тогда

V=1/t0 =600 бод (3.1.4)

Для двухпозиционных сигналов скорость модуляции и скорость передачи совпадают.

Длительность единичного элемента для прямого канала:

t0=1/V=1/600=1,67 (мс) (3.1.5)

Требуемая ширина пропускания Dfпф фильтров передачи определяется по формуле:

Dfпф =1,42×В = 1,42×600 = 852 Гц (3.1.6)

С учетом допуска на временную и температурную нестабильность параметров фильтра берем Dfпф = 940 Гц (то есть на 10% больше рассчитанного).

Определяем отношение несущей частоты к модулирующей для передачи по прямому каналу:

Для «1»: f1/fмод = 1300 / 600 =2,17 (3.1.7)

Для «0»: f0/fмод = 1700 / 600 =2,83 (3.1.8)

Так как отношения меньше 3, то при модуляции возникает «отраженный спектр» и данные будут искажаться еще в приемнике. Поэтому для борьбы с «отраженным спектром» будем осуществлять модуляцию на повышенной несущей частоте с последующим переносом спектра сигнала в полосу пропускания канала.

Несущая частота f1м должна быть в 5-10 раз больше частоты модулирующего сигнала.

f1м >=5×B>=5×600 = 3000(Гц) (3.1.9)

Полосовой фильтр ПФ1 будет пропускать сигналы в диапазоне частот 3000 - Dfпф / 2; 3000 + Dfпф / 2. Получаем, что диапазон (2530 – 3470) Гц.

Среднее значение частоты передачи в прямом канале связи:

Fcp=(f1+f0)/2=(1300+1700)/2=1500 Гц (3.1.10)

Тогда чтобы перенести сигнал в эту область генератор преобразователя должен иметь частоту fм2=fм1-fср=3000-1500 = 1500 Гц.

После модуляции получаем верхнюю и нижнюю боковую полосу, но будем передавать только нижнюю боковую полосу частот.

Fн = 2530 Гц и Fв = 3470 Гц

Тогда полоса пропускания ПФ2 будет такая

(2530 – 1500; 3470 – 1500) = (1030 – 1970) Гц

Для обеспечения высокой помехоустойчивости и скорости передачи информации при транспортировке больших массивов сообщений следует строить синхронные УПС.

Вероятность ошибочного приема единичных элементов Роп вычисляется по следующей формуле

Роп = 0.5×(tпр×vпр)/3600×t0×В = 0,5×5×10-3×8/3600×600×1/600 = 5,66*10-6 (3.1.11)

где tпр – средняя длительность перерывов в долях от t0;

vпр – интенсивность перерывов.

Максимально допустимая вероятность ошибок на выходе УПС от воздействия флуктуационных помех:

Роф <Р0-Роп (3.1.12)

Роф<10-3 - 5,66×10-6 = 0,99×10-3

Определение метода регистрации единичных элементов.

Средняя длительность перерывов tпр = 5 (мс) больше длительности единичных элементов (1,67 мс) и, следовательно пропадание единичного элемента возможно при любом методе регистрации. В кабельных каналах связи наиболее устойчивым является метод регистрации стробированием. Поэтому будем использовать эту регистрацию.

Максимально допустимая средне квадратичная величина краевых искажений вычисляется по формуле

dкв = (mэф - dпр)/z (3.1.13)

где mэф = 45 – 48 % - исправляющая способность

Искажение единичных элементов может происходить при сдвиге несущей частоты в каналообразующей аппаратуре. При этом с ЧМ сдвиг частоты приводит к постоянным преобладающим искажениям, величина которых dпр может быть оценена выражением

d пр = (df×B/(Df×DFk))×100% (3.1.14)

где df – сдвиг частоты в канале связи (не превышает 5 Гц для телефонных каналов);

Df – девиация частоты (она равна 200 Гц);

DFk – рассчитанная эффективная полоса пропускания канала (940 Гц).

d пр = (5×600/(200×940)) ×100 % = 1,596 %

где z – аргумент функции Крампа, который мы можем найти, используя заданную допустимую вероятность ошибки регистрации

Ф(z) = 1 – P0 = 0,999 (3.1.15)

и из таблицы выбираем z = 3,30, тогда получаем

dкв = (45 – 1,596) / 3,30 = 13,153 %.

Воспользовавшись найденными величинами, найдем отношение сигнал/помеха. Величина dкв для систем с различными видами модуляции может быть найдена по формуле

d кв =(В/(2*q*DFк))*100% (3.1.16)

Из этой формулы выражаем q:

q = (B×100 %)/(d кв ×2×DFк) = (600×100)/(13,153×2×940) = 2.43 (3.1.17)

Рассчитаем эффективное значение помехи на входе первого фильтра приемника. Uп эф = 0,0022 В – по заданию.

Uc эф ≥q×Uп эф, следовательно

Uc эф = Uп эф×q = 2,43×0,0022 = 0,0054 (В) (3.1.18)

Соответственно минимально допустимый уровень сигнала на выходе канала будет

Рс вых = 20×lg(Uc эф/Uисх) = 20×lg(0,0054/0,775) = -43 дБ (Uисх = 0,775 В) (3.1.19)

С учетом затухания канала минимальный уровень сигнала на выходе передающей части (входе канала) должен быть

Рс вх > Рс вых +аост =–43+20=–23дБ (3.1.20)

Для определения необходимости коррекции характеристики ГВП канала рассчитаем максимально допустимую величину ее неравномерности. Так как характеристика ГВП для канала ТЧ имеет обычно четко - симметричный характер, то

tгр доп=1/В=1/600=0,001667 = 1,667×10-3 (с) (3.1.21)

По техническому заданию неравномерность ГВП составляет 3*10-3 (с).

Расчет устройства синхронизации.

Определим допустимую погрешность синхронизации по формуле:

едоп = 0,5 – mэф – dпр = 0,5 – 0,45 – 0,01596 = 0,034 (3.1.22)

Динамическая составляющая погрешности определяется по формуле:

 

 (3.1.23)

 

где mд – коэффициент деления делителя частоты;

S – коэффициент деления реверсивного счетчика;

Тс – время синхронизации.

Найдем неизвестные нам величины mд и S

Тс = S × mд /В (3.1.24)

следовательно S × mд = Тс × B = 7 × 600 = 4200, тогда


 

Определим допустимую статическую погрешность синхронизации при заданных параметрах краевых искажений:

ест = едоп – един = 0,034 – 0,013 = 0,021 (3.1.25)

Допустимая величина коэффициента нестабильности задающих генераторов kf модулятора и демодулятора равна

kf = едоп /(2×В×tпс) = 0,034 / (2×600×1,6) = 1,77×10-5 (3.1.26)

где tпс – время поддержки синхронизма.

Найдем коэффициент деления реверсивного счетчика и делителя частоты S и mд соответственно. Для этого решим систему:

 

 (3.1.27)

ест = 1/mд + 4 × kf × S

 

Решив систему и округлив полученные значения, получим следующие результаты: S = 70, mд = 64. Следовательно, частота задающего генератора равна

f0 = mд×fв = 64×600 = 38400 Гц (3.1.28)

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...