Шкала атрибутивных оценок тесноты корреляционной зависимости
Решение типовых задач. Примечание к решению типовых задач. При решении типовых задач в табличном процессоре EXCEL и вручную, на калькуляторе из-за особенностей программы при округления цифр промежуточных расчётов некоторые из итоговых результатов могут отличаться. Это не является ошибкой, а лишь особенностью пакетного и ручного решения. Задача 1. Приводятся данные за 2000 год по территориям Северо-Западного федерального округа Таблица № 1.
1) Предварительный анализ исходных данных выявил наличие одной территории (г.Санкт-Петербург) с аномальными значениями признаков. Эта территория исключена из дальнейшего анализа. Значения показателей в итоговых строках приведены без учёта указанной аномальной единицы. Задание: 1. Расположите территории по возрастанию фактора X. Сформулируйте рабочую гипотезу о возможной связи Y и X. 2. Постройте поле корреляции и сформулируйте гипотезу о возможной форме и направлении связи. 3. Рассчитайте параметры а1 и а0 парной линейной функции 4. Оцените тесноту связи с помощью показателей корреляции (r и ρ) и детерминации (r2 и ρ2), проанализируйте их значения.
5. Надёжность уравнений в целом оцените через F-критерий Фишера для уровня значимости a=0,05. 6. На основе оценочных характеристик выберите лучшее уравнение регрессии. 7. По лучшему уравнению регрессии рассчитайте теоретические значения результата ( 8. Рассчитайте прогнозное значение результата 9. Рассчитайте интегральную и предельную ошибки прогноза (для a=0,05), определите доверительный интервал прогноза ( Решение: 1.Для построения графика расположим территории по возрастанию значений фактора Таблица № 2.
2.Обычно моделирование начинается в построения уравнения прямой:
3.Расчёт неизвестных параметров уравнения выполним методом наименьших квадратов (МНК), построив систему нормальных уравнений и решая её, относительно неизвестных а0 и а1. Для расчёта используем значения определителей второго порядка Δ, Δа0 и Δа1. Расчётные процедуры представим в разработочной таблице, в которую, кроме значений Y и X, войдут X2, X*Y, а также их итоговые значения, средние, сигмы и дисперсии для Y и X. См. табл.3.
Расчётная таблица № 3
3.Расчёт определителя системы выполним по формуле:
Расчёт определителя свободного члена уравнения выполним по формуле:
Расчёт определителя коэффициента регрессии выполним по формуле:
4.Расчёт параметров уравнения регрессии даёт следующие результаты:
В конечном счёте,
В уравнении коэффициент регрессии а1 = 0,402 означает, что при увеличении доходов населения на 1 тыс. руб. (от своей средней) объём розничного товарооборота возрастёт на 0,402 млрд. руб. (от своей средней). Свободный член уравнения а0 = 3,415 оценивает влияние прочих факторов, оказывающих воздействие на объём розничного товарооборота. 5.Относительную оценку силы связи даёт общий (средний) коэффициент эластичности:
В нашем случае, когда рассматривается линейная зависимость, расчётная формула преобразуется к виду:
Это означает, что при изменении общей суммы доходов населения на 1% от своей средней оборот розничной торговли увеличивается на 0,744 процента от своей средней.
6.Для оценки тесноты связи рассчитаем линейный коэффициент парной корреляции:
Коэффициент корреляции, равный 0,9075, показывает, что выявлена весьма тесная зависимость между общей суммой доходов населения за год и оборотом розничной торговли за год. Коэффициент детерминации, равный 0,824, устанавливает, что вариация оборота розничной торговли на 82,4% из 100% предопределена вариацией общей суммы доходов населения; роль прочих факторов, влияющих на розничный товарооборот, определяется в 17,6%, что является сравнительно небольшой величиной. 7.Для оценки статистической надёжности выявленной зависимости дохода от доли занятых рассчитаем фактическое значение F -критерия Фишера – Fфактич . и сравним его с табличным значением – Fтабл. По результатам сравнения примем решения по нулевой гипотезе В нашем случае, Значения В силу того, что
8.Определим теоретические значения результата Yтеор. Для этого в полученное уравнение последовательно подставим фактические значения фактора X и выполним расчёт. Например, График 1
9.Оценку качества модели дадим с помощью скорректированной средней ошибки аппроксимации:
В нашем случае, скорректированная ошибка аппроксимации составляет 10,2%. Она указывает на невысокое качество построенной линейной модели и ограничивает её использование для выполнения точных прогнозных расчётов даже при условии сравнительно небольшого изменения фактора X (относительно его среднего значения 10.Построение логарифмической функции предполагает предварительное выполнение процедуры линеаризации исходных переменных. В данном случае, для преобразования нелинейной функции Расчётная таблица № 4
Расчёт определителей второго порядка даёт следующие результаты:
Полученное уравнение имеет вид: Оценочные показатели позволяют сделать вывод, что линейно-логарифмическая функция описывает изучаемую связь хуже, чем линейная модель: оценка тесноты выявленной связи ρ=0,9066 (сравните с 0,9075), скорректированная средняя ошибка аппроксимации здесь выше и составляет 10,4%, то есть возможности использования для прогноза данной модели более ограничены. Таким образом, можно придти к выводу, что по сравнению с линейной моделью данное уравнение менее пригодно для описания изучаемой связи. 11.Выполним расчёт параметров уравнения параболы второго порядка. В этом случае используются определители третьего порядка,расчёт которых выполняется по стандартным формулам и требует особого внимания и точности. См. расчётную таблицу 5.
По материалам табл. 5 выполним расчёт четырёх определителей третьего порядка по следующим формулам: Δ = n*Σx2*Σx4 + Σx*Σx3*Σx2 + Σx*Σx3*Σx2 – Σx2*Σx2*Σx2 – Σx*Σx*Σx4 – Σx3*Σx3*n = = 331.854.860,7; Δa0 = Σy*Σx2*Σx4 + Σx*Σx3*Σ(y*x2)+ Σ(y*x)*Σx3*Σx2 – Σ(y*x2)*Σx2*Σx2 – — Σ(y*x)*Σx*Σx4 – Σx3*Σx3*Σy = 751.979.368,8 Δa1 = n*Σ(y*x)*Σx4 + Σy*Σx3*Σx2 + Σx*Σ(y*x2)*Σx2 – Σx2*Σ(y*x)* Σx2 – Σx*Σy* Σx4 - — Σ(y*x2)*Σx3*n = 167.288.933,1
Δa2 = n*Σx2*Σ(y*x2) + Σx*Σyx*Σx2 + Σx*Σx3*Σy – Σx2*Σx2*Σy – Σx*Σx*Σ(y*x2) – - Σx3*Σ(y*x)*n = - 656.926,8 В результате получаем следующие значения параметров уравнения параболы:
Уравнение имеет следующий вид: Как видим, по сравнению с линейной функцией построить уравнения параболы гораздо сложнее, а изучаемую зависимость она описывает почти с той же точностью, хотя надёжность уравнения параболы значительно ниже (для линейной модели Fфактич. = 32,8,а для параболы Fфактич.= 14,3). Поэтому в дальнейшем анализе парабола второго порядка использоваться не будет. Расчётная таблица № 5
12.Проведём расчёт параметров степенной функции, которому также предшествует процедура линеаризации исходных переменных. В данном случае, выполняется логарифмирование обеих частей уравнения, в результате которого получаем уравнение, в котором линейно связаны значения логарифмов фактора и результата. Исходное уравнение Расчётная таблица № 6
В результате расчёта получены следующие значения определителей второго порядка:
Параметры степенной функции составляют:
Уравнение имеет вид: lnY=ln a0 + a1*ln X = 0,2045 + 0,7460*X, а после процедуры потенцирования уравнение приобретает окончательный вид:
Полученное уравнение несколько лучше описывает изучаемую зависимость и более надёжно по сравнению с линейной моделью. Степенная модель имеет детерминацию на уровне 84,0% (против 82,4% по линейной модели), Fфакт. =36,6 (против 33,1 для линейной модели) и ошибку аппроксимации на уровне 10,6% (сравните с 10,9% для уравнения прямой). Очевидно, что преимущества степенной модели по сравнению с линейной не столь значительны, но её построение заметно сложнее и требует значительно больших усилий. Поэтому окончательный выбор, в данном конкретном случае, сделаем в пользу модели, которая является более простой при построении, анализе и использовании, то есть в пользу линейной модели:
Заключительным этапом решения данной задачи является выполнение прогноза и его оценка. Если предположить, что прогнозное значение общей суммы доходов населения, например, Новгородской области, (см. табл.2 строка 2) возрастёт с 14,8 млрд. руб.на 5,7% и составит 15,6 млрд. руб., то есть Рассчитаем интегральную ошибку прогноза - В нашем случае Ошибка положения регрессии составит: = Интегральная ошибка прогноза составит: Предельная ошибка прогноза, которая не будет превышена в 95% возможных реализаций прогноза, составит: Это означает, что фактическая реализация прогноза будет находиться в доверительном интервале
Нижняя граница доверительного интервала составит: Относительная величина различий значений верхней и нижней границ составит: Задача № 2. Выполняется изучение социально-экономических процессов в регионах Южного федерального округа РФ по статистическим показателям за 2000 год.
Требуется изучить влияние указанных факторов на оборот розничной торговли. Предварительный анализ исходных данных по 12 территориям выявил наличие двух территорию (Краснодарский край и Ростовская обл.) с аномальными значениями признаков. Эти территории должны быть исключены из дальнейшего анализа. Значения приводимых показателей рассчитаны без учёта указанных аномальных единиц. При обработке исходных данных получены следующие значения: а) - линейных коэффициентов парной корреляции, средних и средних квадратических отклонений -σ:
N=10.
б) - коэффициентов частной корреляции
Задание: 1. По значениям линейных коэффициентов парной и частной корреляции выберите неколлинеарные факторы и рассчитайте для них коэффициенты частной корреляции. Произведите окончательный отбор информативных факторов во множественную регрессионную модель. 2. Выполните расчёт бета коэффициентов (b) и постройте с их помощью уравнение множественной регрессии в стандартизованном масштабе. Проанализируйте с помощью бета коэффициентов (b) силу связи каждого фактора с результатом и выявите сильно и слабо влияющие факторы. 3. По значениям b -коэффициентов рассчитайте параметры уравнения в естественной форме (то есть a1, a2, и a0). Проанализируйте их значения. Сравнительную оценку силы связи факторов дайте с помощью общих (средних) коэффициентов эластичности - 4. Оцените тесноту множественной связи с помощью R и R 2, а статистическую значимость уравнения и тесноту выявленной связи - через F -критерий Фишера (для уровня значимости a =0,05). 5. Рассчитайте прогнозное значение результата 6. Основные выводы оформите аналитической запиской. Решение. 1. Представленные в условии задачи значения линейных коэффициентов парной корреляции позволяют установить, что оборот розничной торговли -Y более тесно связан со среднегодовой численностью населения- Расчёты частных коэффициентов корреляции выполним по следующим формулам:
Как видим, факторы Расчёт аналогичных показателей по следующей паре факторов приводит к иным результатам:
В данном случае, межфакторное взаимодействие оценивается как заметное (
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|