Распределение памяти фиксированными разделами.
Стр 1 из 3Следующая ⇒ Введение. Главная задача компьютерной системы - выполнять программы. Программы, в течение выполнения, вместе с данными, к которым они имеют доступ, должны частично или полностью находиться в оперативной памяти. Поэтому оперативная память – это ресурс, без которого невозможно исполнение программы. Часть ОС, которая управляет памятью, называется менеджером памяти. В основу распределения памяти лежат следующие основополагающие идеи: Во-первых, это идея сегментации. В начале сегменты памяти появились в связи с необходимостью обобществления процессами фрагментов программного кода (текстовый редактор, тригонометрические библиотеки и т.д.), без чего каждый процесс должен был хранить в своем адресном пространстве дублирующую информацию. Эти отдельные участки памяти, хранящие информацию, которую система отображает в память нескольких процессов, получили название сегментов. Память, таким образом, стала двумерной. Адрес состоит из двух компонентов: номер сегмента, смещение внутри сегмента. Далее оказалось удобным размещать в разных сегментах данные разных типов (код программы, данные, стек и т. д.). Попутно выяснилось, что можно контролировать характер работы с конкретным сегментом, приписав ему атрибуты, например, права доступа или типы операций, разрешенные с данными, хранящимися в сегменте. Большинство современных ОС поддерживают сегментную организацию памяти. В некоторых архитектурах процессоров, например Intel, сегментация поддерживается оборудованием. Вторая идея – разделение памяти на физическую и логическую. Адреса, к которым обращается процесс, отделяются от адресов, реально существующих в оперативной памяти. Адрес, сгенерированный программой, обычно называют логическим адресом, а адрес, который видит устройство памяти, например, адресный регистр называется физическим адресом. Менеджер памяти осуществляет связывание (или отображения) логического адресного пространства с физическим.
Третья идея – временная и пространственная локальность. Пространственная локальность означает, что соседние объекты характеризуются похожими свойствами. Временная локальность это когда объекты характеризуются похожими свойствами в течение малого промежутка времени. Свойство локальности объясняется, тем, что в течение какого-то отрезка времени ограниченный фрагмент кода работает с ограниченным набором данных. Понимание данной особенности позволяет организовать иерархию памяти, используя быструю дорогостоящую память для хранения минимума необходимой информации, размещая оставшуюся часть данных на устройствах с более медленным доступом и подкачивая их в быструю память по мере необходимости. Типичный пример иерархии: регистры процессора, кэш процессора, главная память, внешняя память на магнитных дисках (вторичная память). Часть оперативной памяти должна быть выделена ядром операционной системы. Обычно ядро ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Предполагается, что ядро ОС работает безошибочно и не нарушает правильности работы пользовательских программ. В случае, когда пользовательская программа приводит к некорректному исполнению, управляющей программы в системе должны быть предусмотрены средства перезапуска ОС. Распределению подлежит вся оперативная память, не занятая операционной системой. Основными функциями менеджера памяти являются: ü отслеживание свободной и занятой памяти; ü выделение памяти процессам и освобождение памяти при завершении процессов;
ü вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место; ü настройка адресов программы на конкретную область физической памяти. Все методы управления памятью могут быть разделены на два класса: методы, которые используют перемещение процессов между оперативной памятью и диском, и методы, которые не делают этого (рис. 4.1.). Методы распределения памяти без использования дискового пространства. Распределение памяти фиксированными разделами. Подсистема управления памятью в этом случае выполняет следующие задачи: ü сравнивая размер программы, поступившей на выполнение, и свободных разделов, выбирает подходящий раздел, ü осуществляет загрузку программы и настройку адресов. Преимуществом данного метода является простота ее реализации. Но имеет существенный недостаток - жесткость. Так как в каждом разделе может выполняться только одна программа, то уровень мультипрограммирования заранее ограничен числом разделов не зависимо от того, какой размер имеют программы. Даже если программа имеет небольшой объем, она будет занимать весь раздел, что приводит к неэффективному использованию памяти. С другой стороны, даже если объем оперативной памяти машины позволяет выполнить некоторую программу, разбиение памяти на разделы не позволяет сделать этого. Распределение памяти разделами переменной величины В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рисунке 3 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент t0 в памяти находится только ОС, а к моменту t1 память разделена между 5 задачами, причем задача П4, завершаясь, покидает память. На освободившееся после задачи П4 место загружается задача П6, поступившая в момент t3.
Задачами операционной системы при реализации данного метода управления памятью является: ü ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти, ü при поступлении новой задачи - анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи, ü загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей, ü после завершения задачи корректировка таблиц свободных и занятых областей. Программный код не перемещается во время выполнения, то есть может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика. Выбор раздела для вновь поступившей задачи может осуществляться по разным правилам, таким, например, как "первый попавшийся раздел достаточного размера", или "раздел, имеющий наименьший достаточный размер", или "раздел, имеющий наибольший достаточный размер". Все эти правила имеют свои преимущества и недостатки. По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток - фрагментация памяти. Фрагментация - это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.
Перемещаемые разделы Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов, так, чтобы вся свободная память образовывала единую свободную область (рис. 4). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется "сжатием". Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором - реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом. Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|