Рис.2.2. Блок-схемы наиболее широко используемых закладных устройств
Рис. 2. 2. Блок-схемы наиболее широко используемых закладных устройств
В радиозакладных устройствах в основном применяется модуляция несущей частоты передатчика, однако, встречаются радиозакладные устройства с модуляцией сигнала промежуточной частоты или двойной модуляции (например, радиозакладка РК – 1970 – SS). Прием таких сигналов на обычный супергетеродинный приемник невозможен (после детектирования прослушивается обычный шум). Для приема может быть использован только специальный приемник. Виды модуляции, используемой в радиозакладных устройствах в процессе их развития на нашем рынке, приведены на рис. 3. И хотя в наше время все еще широко используются радиозакладки с WFM (широкополосной) и NFM (узкополосной) модуляцией, появился принципиально новый класс радиозакладных устройств с дельта модуляцией, адаптивной дельта модуляцией, ППРЧ и т. п.. Кроме того, в наиболее профессиональных радиозакладках используют такие сложные сигналы, как шумоподобные или с псевдослучайной перестановкой несущей частоты. Например, в радиозакладках SIM-PR-9000T и РК-1970 используются шумоподобные сигналы с фазовой манипуляцией и шириной спектра 4 и 5 мГц (Л. 2).
С ЦИФРОВЫМ ПРЕОБРАЗОВАНИЕМ НИЗКОЧАСТОТНОГО СИГНАЛА ШУМОПОДОБНЫЕ СИГНАЛЫ
АДР-АДАПТИВНАЯ ДЕЛЬТА МОДУЛЯЦИЯ
Рис. 2. 3. Количество образцов радиозакладных устройств в различных участках частотного спектра. Используемые виды модуляции
При кодировании перехваченной информации часто применяется аналоговое скремблирование, изменяющее характеристики речевого сигнала таким образом, что он становится неразборчивым. Так в радиозакладке РК – 2010 S используется простая инверсия спектра с точкой инверсии 1, 862 кГц, а в радиозакладке “ Брусок – ЛЗБ ДУ”, РК – 1380 SS – сложная инверсия спектра. В ряде закладок используется преобразование речевой информации в цифровой вид (радиозакладки РК – 1195 – SS, РК – 2050), а в радиозакладках SIM – PR – 9000Т и РК – 1970 наряду с преобразованием информации в цифровой вид используется ее шифрование. Использование новых видов модуляции и кодирования передаваемой радиозакладочными устройствами перехваченной информации существенно затрудняют поиск радиозакладочных устройств супергетеродинными приемными устройствами и системами. В этом отношении использование широкополосных индикаторов поля воспринимающих энергетику излучений радиозакладочных устройств и не реагирующих на используемый вид модуляции является особо положительным для проведения их поиска. Демаскирующие признаки радиозакладных устройств. Демаскирующие признаки радиозакладных устройств являются: -энергетический признак (уровень сигнала); - временной признак (время появления сигнала); - частотный признак (частота сигнала). Демаскирующие признаки радиоизлучений определяются техническими характеристиками радиосигналов – энергетическими, временными, частотными, спектральными, фазовыми, поляризационными, пространственно-энергетическими.
К энергетическим характеристикам можно отнести мощность излучения радиозакладки (относительная мощность по распределению в помещении), напряженность электромагнитного поля, плотность потока мощности, спектральную плотность мощности и т. п. К временным характеристикам относятся – время включения на передачу перехваченной информации (по команде, после накопления определенного объема информации, одновременно с появлением речевого сигнала и т. д. ), при использовании импульсной передачи – период следования импульсов, форма импульса и его длительность, длительность серии импульсов и ее период, структура кодовой посылки и т. д. Спектральные характеристики определяют ширину спектра, вид спектра, форму огибающей спектра, относительную величину отдельных спектральных составляющих и т. д. К фазовым демаскирующим признакам можно отнести вид фазовой модуляции, параметры этой модуляции, значения и количество дискретных скачков фазы и т. д. Пространственно-энергетические признаки определяют направление излучения, направление максимума излучения, характеристики диаграммы направленности антенны – ширина диаграммы направленности, уровень боковых лепестков, форму диаграммы и т. д, Поляризационные характеристи – вид поляризации (линейная, эллиптическая, круговая), направление вращения вектора электрического поля. Демаскирующими характеристиками радиозакладочных устройств является превышение мощности излучаемого радиозакладкой излучения над уровнем электромагнитного поля помещения. Для более четкого определения места расположения радиозакладки важно настроить индикатор поля в режим реагирования на минимальное превышение уровня поля, усредненное для проверяемого помещения. В этом случае обеспечивается максимальная зона определения радиозакладки. Важным условием повышения чувствительности индикаторов поля является совпадение поляризационных характеристик антенных систем радиозакладки и индикатора поля (предусмотрена возможность поворота антенны индикатора в различных плоскостях).
Характеристика принципа действия индикаторов электромагнитного поля и частотометров. Индикаторы (детекторы) электромагнитного поля позволяют выявлять закладные устройства (ЗУ), внедрённые в защищаемые помещения и на объекты информатизации и использующие для передачи информации радиоканал, а также диктофоны и устройства скрытой видеозаписи. Индикаторы поля эффективно используются для обнаружения и локализации малогабаритных радиозакладочных устройств (" жучков" ) независимо от используемого в них вида модуляции. Принцип поиска заключается в выявлении максимума уровня излучения. Индикаторы поля, как правило, снабжены световой и звуковой сигнализацией, иногда виброиндикацией. Многие из них могут работать в режиме " акустозавязки", а также обладают возможностью ручного или автоматического изменения чувствительности (вычитание фона) для работы в условиях высокого уровня радиочастотного фона. Принцип действия индикаторов электромагнитного поля основан на интегральном методе измерения уровня электромагнитного поля в точке их расположения. В состав индикаторов поля входят антенна, фильтр высокой частоты, усилитель высокой частоты (при необходимости), диодный детектор, усилитель постоянного тока с логарифмической зависимостью коэффициента усиления, звуковой генератор с изменяющейся частотой и индикатор принимаемых сигналов – устройство индикации уровня входного сигнала. Принцип работы такого индикатора состоит в следующем. Сигнал, наведенный в антенне, через фильтр высоких частот поступает на широкополосный апериодический усилитель, нагрузкой которого служит эмиттерный повторитель, с него на диодный детектор. Высокочастотные составляющие сигнала фильтруются фильтрами, а низкочастотный сигнал поступает на усилитель постоянного тока, коэффициент усиления которого определяется величиной сопротивления в цепи отрицательной обратной связи. Чувствительность индикатора регулируется изменением сопротивления резистора на выходе эмиттерного повторителя. С выхода усилителя сигнал поступает на устройство индикации уровня сигнала и звуковой генератор. Относительный уровень сигнала входного сигнала отображается на стрелочном, жидкокристаллическом или световом индикаторе.
Световые индикаторы выполняют в виде линейки из 4 - 12 светодиодов, каждый последующий из которых загорается при повышении уровня входного сигнала на определённую величину, как правило, в соответствии с логарифмической шкалой. Яркость свечения светодиодов или поддерживается постоянной, или увеличивается при повышении уровня входного сигнала. Светодиоды могут быть одного или разных цветов. При использовании светодиодов разного цвета последние 2 - 4 диода, как правило, выбираются красного цвета. На жидкокристаллическом индикаторе относительный уровень сигнала отображается в цифровом виде или на (10 - 32)-сегментной линейке, при этом очередной сегмент загорается при повышении уровня сигнала на некоторую величину (чаще всего - на 3 дБ). Нулевой относительный уровень сигнала устанавливается оператором с помощью регулятора чувствительности индикатора или автоматически при калибровке прибора. Определение уровня входного сигнала фиксируется также звуковым генератором, который формирует прямоугольные импульсы, частота следования которых возрастает с увеличением напряжения на выходе усилителя постоянного тока. Эти импульсы пьезокерамическим преобразователем преобразуются в звуковые и оператор имеет возможность контроля по звуку приближение к радиозакладочному устройству. Ряд индикаторов электромагнитного поля снабжены блоком измерения частоты радиозакладки, позволяющим проводить анализ достаточно мощного излучения радиозакладки (на практике антенна индикатора приближается на минимально возможное расстояние - кладется на радиозакладку) с помощью микропроцессора, включенного в состав индикатора. Значение частоты в цифровой форме отображается на жидкокристаллическом экране. Большинство современных индикаторов поля оборудуются блоком измерения частоты сигнала. В основу работы такого блока положен принцип «захвата» частоты радиосигнала с максимальным уровнем (как правило, уровень такого сигнала на 10 - 15 дБ должен превышать интегральный уровень остальных сигналов) и последующим анализом его характеристик микропроцессором. Микропроцессор производит запись сигнала во внутреннюю память, цифровую фильтрацию, проверку на стабильность и когерентность сигнала и измерение его частоты. Значение частоты в цифровой форме отображается на жидкокристаллическом экране.
Приборы, у которых измерение частоты сигнала является основной функцией, а относительного уровня сигнала - дополнительной, часто называют радиочастотомерами. По сравнению с индикаторами поля они имеют большую точность измерения частоты сигнала. • частотный диапазон; • чувствительность индикатора; • динамический диапазон измерения уровня входного сигнала; • диапазон регулировки относительного нулевого уровня сигнала (чувствительности); • чувствительность частотомера; • диапазон регулировки чувствительности индикатора. Частотный диапазон является одной из основных характеристик индикатора поля, определяющих его возможности по поиску ЗУ. Нижняя частота диапазона определяется главным образом граничной частотой фильтра высоких частот и, как правило, находится в пределах 30 - 50 МГц. Верхняя частота диапазона во многом зависит от характеристик антенны, входного каскада и диода детектора и составляет от 2, 5 до 8, 0 ГГц. Некоторые индикаторы поля способны принимать сигналы в диапазоне до 14 ГГц и более. Чувствительность индикатора поля определяет предельные возможности по обнаружению сигналов, то есть максимальную дальность обнаружения ЗУ. Эта характеристика важна при поиске ЗУ в местах с относительно низким уровнем фонового излучения. Например, при чувствительности индикатора поля 1 - 1, 5 мВ и уровне «фонового излучения» менее 0, 5 мВ максимальная дальность обнаружения радиозакладки с типовой мощностью излучения 5-7 мВт может составлять 5 - 8 м. Для реальных условий поиска эта характеристика не является определяющей, так как уровень фонового излучения, как правило, всегда превышает чувствительность индикатора поля. Учитывая, что для обнаружения сигнала необходимо, чтобы его уровень превышал «естественный фон» на 5 - 10 дБ, дальность обнаружения радиозакладки с мощностью излучения 5-7 мВт для реальных условий обычно не превышает 1 - 2 м. Интегральная чувствительность современных индикаторов поля составляет от 0, 6 до 5 мВ. Спектральная чувствительность индикатора поля во многом зависит от характеристик антенны и входного каскада. В качестве примера на рис. 2. 4приведена спектральная чувствительность индикатора поля РИЧ-3 и радиочастотомера Scout-40.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|