Рентгенофлуоресцентный анализ
История создания РФА 8 ноября 1895 года Вильгельм Конрад Рентген - профессор университета баварского города Вюрцбурга на юге Германии совершенно неожиданно сделал открытие, принесшее ему мировую известность. 27 ноября того же года шведский изобретатель и промышленник Альфред Бернхард Нобель подписал в Париже завещание. Этим судьбоносным событиям довелось встретиться через пять лет. Первую в истории Нобелевскую премию по физике (1901 г.) присудили 56-летнему В.Рентгену за сделанное пятью годами ранее открытие лучей, которые носят его имя (сам ученый назвал их Х-лучами). К тому времени Рентген был известным ученым, профессором Мюнхенского университета и директором Физического института. Слово "рентген" уже стало нарицательным, тем не менее, история открытия рентгеновских лучей, условия и методы работы их первооткрывателя и последующие открытия продолжают интересовать многих. Историки науки установили, что излучение, возникающее в катодно-лучевой трубке, многократно наблюдалось прежде, до открытия Рентгена. То есть Рентген был не первым ученым мира, который исследовал так называемые катодные лучи. Во второй половине XIX в. катодные трубки были во всех крупных физических лабораториях, и очень странно, что до Рентгена никто не замечал этих лучей. Еще в 1876 - 1880 гг. Эуген Гольдштейн изучал катодные лучи и наблюдал свечение некоторых солей. Десять лет спустя, Томсон, проводя свои опыты с катодными лучами, также заметил, что стекло, помещенное более чем в метре от трубки, фосфоресцирует. Однако он не обратил на это должного внимания. Физики того времени по опыту хорошо знали, что около работающей катодной трубки нельзя оставлять фотоматериалы, ибо они засвечиваются. Например, в 1890 году в Америке был случайно получен рентгеновский снимок лабораторных предметов. А за 11 лет до Рентгена директор Бакинского реального училища Евгений Каменский описал лучи, обладающие фотохимическим действием. Секретарем Бакинского фотографического кружка Мишона производились даже опыты в области фотографии, аналогичные рентгеновским. К сожалению, опубликовано сообщение об этом было только в 1896 году в журнале "Природа и люди" N28. За 10 лет до опубликования открытия Рентгеном разрядами в вакуумных трубках начал интересоваться русский профессор Иван Павлович Пулюй. Он заметил, что эти лучи проникают через непрозрачные предметы и засвечивают фотопластинки. В 1890 году им были получены фотографии скелета лягушки и детской руки и даже опубликованы в европейских журналах. Однако дальнейшим изучением лучей он не занимался. Но факт остаётся фактом - известия об Х-лучах начали появляться еще за 10 лет до открытия Рентгена.
Эти и некоторые другие сообщения свидетельствуют о том, что ученые находились на пороге открытия. Последний, решающий шаг был сделан Рентгеном в 1895 г. Профессору Вильгельму Конраду Рентгену уже минуло 50 лет, когда он совершил свое открытие. Рентген сразу же поставил серию экспериментов и подробнейшим образом описал свойства вновь открытых лучей. Потому именно Вильгельм Конрад Рентген (1845-1923) вошел в историю, как первооткрыватель. Было это так... Занимаясь исследованиями электрического разряда в стеклянных вакуумных трубках Крукса используя искровой индуктор с прерывателем, газоразрядную трубку и флуоресцирующий экран, Вильгельм Рентген заметил странное свечение кристаллов, лежавших на лабораторном столе. Он затемнил комнату и обернул газоразрядную трубку плотной непрозрачной черной бумагой. И тогда, к своему удивлению, он продолжал наблюдать бледно-зеленое свечение стоявшей неподалеку бумажной ширмочки, покрытой платиносинеродистым барием. Тщательнейшим образом проанализировав и устранив возможные причины ошибок Рентген установил, что свечение появлялось всякий раз, когда он включал трубку Крукса, что источником излучения является именно трубка, а не какая-нибудь другая часть цепи и что экран флуоресцировал даже на расстоянии почти двух метров от трубки, что намного превосходило возможности короткодействующих катодных лучей. Тень, которую отбрасывала на флуоресцирующий экран индукционная катушка, необходимая для создания разряда высокого напряжения, навела Рентгена на мысль об исследовании проникающей способности Х-лучей в различных материалах. Он обнаружил, что Х-лучи могут проникать почти во все предметы на различную глубину, зависящую от толщины предмета и плотности вещества. Натолкнувшись на неизвестное явление, ученый на протяжении семи недель в полном одиночестве работал в одной из комнат своей лаборатории, изучая свойства Х-лучей. Он велел приносить себе пищу в университет и поставить там кровать, чтобы избежать сколько-нибудь значительных перерывов в работе. Только в конце своего "одиночества" он приоткрыл тайну, сделав снимок в Х-лучах руки своей жены Берты с обручальным кольцом, показанный наряду с другими снимками в сообщении 28 декабря 1895 г.
Тридцатистраничный отчет Рентгена был озаглавлен "О новом виде лучей. Предварительное сообщение". Последние два слова выглядят, право же, лишними: по своему содержанию рукопись была куда весомее многих объемистых научных фолиантов. Ее вскоре издадут отдельной брошюрой, переведут на многие европейские языки. Очевидцев открытия не было. Сам Рентген не рассказывал об истоках опыта. Довольно замкнутый по натуре, он не любил репортеров. И сделал едва ли не единственное в жизни исключение, дав в самом начале 1896 г. интервью одной из парижских газет. Счастье, явившееся столь неожиданно, ''великий жребий'', как позднее сказал Рентген, который ему выпал, он хотел заслужить как исследователь, представив совершенно безупречные результаты и еще около двух лет продолжал исследовать свойства лучей. В 1895-97 опубликовал 3 работы, содержавшие анализ свойств нового излучения, причем изучил его настолько основательно, что понадобилось более 10 лет, чтобы добавить что-либо к его выводам. "Впоследствии Рентгену не пришлось отказываться ни от одного слова, что было в его первых сообщениях", - писал немецкий физик Арнольд Зоммерфельд. Да и конструкции первых рентгеновских трубок в основных чертах сохранились до нашего времени…
По-видимому, первым открытие Рентгена в коммерческих целях применил Т.Эдисон: в мае 1896 г. он в Нью-Йорке организовал выставку, где желающие могли разглядывать на экране изображение своих конечностей в рентгеновских лучах. Но после того как его помощник умер от ожогов Х-лучами, Эдисон прекратил все опыты с ними. Однако, несмотря на очевидную опасность, работы с новыми лучами, расширяясь и углубляясь, продолжались. Свойства рентгеновского излучения и эффекты его взаимодействия с веществом, на которых основаны прочно вошедшие в лабораторную практику методы рентгено-спектрального, рентгено-флуоресцентного (РФА) и рентгено-дифракционного (XRD) анализа, были открыты намного позднее. Этот факт подчеркивает глобальность научных следствий открытия X-лучей. Их свойства раскрывались постепенно, на протяжении десятилетий, до настоящего времени. История последующих открытий заслуживает не меньшего внимания, поскольку мировые достижения в применении X-лучей обязаны изучению их свойств. Сразу же после открытия Рентгена среди физиков возник старый спор, который в то время сопутствовал открытию любого вида излучения. Одни считали, что эти лучи представляют собой разновидность электромагнитного излучения вроде света, тогда как другие полагали, что они состоят из частиц. Сам Рентген не мог объяснить происхождение X-лучей, равно как и установить их волновую природу. Он не признавал существование электронов. А ведь именно их торможение в веществе, как мы знаем сейчас, вызывает электромагнитные волны с короткой длиной (меньшей, чем у ультрафиолетового света). В 1899 г. нидерландские физики Г. Хага и К. X. Винд пропустили пучок рентгеновских лучей через узкую щель и обнаружили слабый дифракционный эффект. Отсюда они сделали вывод о волновой природе рентгеновских лучей и оценили длину волны этого излучения: она была порядка одного ангстрема (одной стомиллионной сантиметра). Для сравнения укажем, что видимый свет имеет длину волны порядка нескольких тысяч ангстрем.
В 1904 г. английский физик Чарлз Баркла занялся проверкой гипотезы английского физика Стокса о том, что если рентгеновские лучи являются электромагнитными волнами, то они должны поляризоваться, причем поляризация должна зависеть от способа их образования в катодной трубке. Эксперимент, поставленный Барклом, подтвердил, что рентгеновские лучи представляют собой колебания электромагнитных волн, возникающих в результате торможения электронов, которые ударяют в анод рентгеновской трубки. Поляризация действительно была обнаружена, и это было воспринято как серьезный аргумент в пользу волновой природы рентгеновских лучей. В то же самое время, однако, выявились и некоторые факты, свидетельствующие о корпускулярном характере рентгеновских лучей. В 1908 г. Уильям Генри Брэгг исследовал процесс возникновения заряженных частиц под действием рентгеновского излечения. Он, в частности, наблюдал возникновение при этом потока электронов, на основании чего сделал вывод, что рентгеновские лучи представляют собой поток частиц, ибо подобный эффект могут вызвать только частицы. Эти опыты склонили чашу весов в сторону корпускулярной теории, и такое положение сохранилось до 1912 г., когда неожиданно было представлено блестящее доказательство волновых свойств рентгеновских лучей. В Мюнхенском университете, где продолжал работать Рентген, Макс фон Лауэ исследовал явления дифракции. Лауэ пришел к мысли, что расстояние между атомами в кристаллических решетках - того же порядка, что и предполагаемая длина волны рентгеновских лучей. В этом случае при прохождении лучей через кристалл должно было бы наблюдаться явление дифракции. После некоторых экспериментов удалось получить фотографии сложных дифракционных картин, которые окончательно убедили ученый мир в волновых свойствах рентгеновских лучей. В последствии Макс фон Лауэ разработал теорию интерференции Х-лучей на кристаллах, предложив использовать кристаллы в качестве дифракционных решеток. В том же 1912 г. эта теория интерференции получила экспериментальное подтверждение в опытах В.Фридриха и П.Книппинга. В 1913 г. Вильям Лоренс Брэгг (сын У.Г.Брэгга) и независимо русский кристаллограф Георгий Викторович Вульф вывели формулу, описывающую условия интерференционного отражения рентгеновских лучей от кристаллов (формула Брэгга - Вульфа). Указанная формула, связывающая длину волны рентгеновского излучения с периодом кристаллической решетки кристалла, позволяет, с одной стороны, используя рентгеновские лучи определенной длины волны, исследовать структуру вещества, а с другой - используя такие кристаллы, как поваренная соль, структура которой известна, можно исследовать сами рентгеновские лучи. Обширные эксперименты такого рода, проведенные отцом и сыном Брэггами, положили начало рентгеноструктурному анализу.
Споры того времени вокруг квантовой или волновой природы рентгеновских лучей прекратились с открытием Артура Комптона. Он обнаружил эффект (эффект Комптона): падающий рентгеновский луч выбивает электрон из атома и рассеивается с потерей энергии, подтверждая тем самым, что рентгеновские лучи, как и видимый свет, иногда действуют как частицы. В 1908 г. Уильям Генри Брэгг, как отмечалось ранее, фиксировал возникновение электрического тока под действием Х-лучей, но не мог обнаружить потерю энергии излучения, поскольку тогда еще не было инструментов детельного изучения рентгеновских спектров. Поэтому считается, что именно выводы Комптона убедили ученых и в проявлении корпускулярных свойств Х-лучей. С того времени рентгеновскому излучению присвоен квантово-волнового дуализм. Другое направление исследований рентгеновского излучения берет начало в опытах Чарлза Барклы. В 1897 г. было замечено, что под воздействием рентгеновских лучей, падающих на вещество - неважно, на твердое тело, жидкость или газ, - возникает вторичное излучение. В 1903 г. Баркла опубликовал свои первые результаты по вторичному излучению, которое, как он считал, было вызвано исключительно рассеянием первичного луча. Установленный им эффект, что интенсивность рассеяния увеличивается пропорционально атомному весу вещества, на котором происходит рассеяние, придал вес электронной теории материи, еще не полностью тогда признанной. Дальнейшие наблюдения, выполненные Чарлзом Барклой показали, что в случае более тяжелых элементов вторичное излучение на самом деле состоит из двух компонент: таких же рентгеновских лучей, что и первичное излучение, и менее проникающего - более "мягкого", излучения, которое испускается рассеивающим веществом. Причем проникающая сила мягкого излучения увеличивалась согласно положению, занимаемому излучающим элементом в периодической таблице. Это излучение в 1906 г. Баркла назвал характеристическим, потому что проникающая способность зависела от характера излучающего вещества. Генри Мозли позднее воспользовался этим результатом чтобы установить смысл атомного номера элемента (число единиц заряда ядра). Это стало важным шагом к пониманию строения атомного ядра. Важность открытия характеристического излучения стала ясной через десять лет, после того как отец и сын Брэгги показали возможность исследования рентгеновских спектров с помощью кристаллов с известным строением. Используя методику экспериментов, предложенную Брэггами, в 1911 г. Баркла показал, что характеристическое излучение тяжелых элементов бывает двух типов: коротковолновое, которое он назвал K-излучением, и длинноволновое, названное им L-излучением. Эти эксперименты фактически стали началом рентгеновской спектроскопии. П Ценный вклад в эту область внесли французский физик Морис де Бройль (старший брат Луи де Бройля) и английский физик Генри Мозли, который первым начал исследовать спектры рентгеновского излучения химических элементов, заложив основу рентгеноспектрального анализа. На практике эти открытия в то время использовали только для получения рентгеновских лучей с определенными свойствами, что было необходимо для рентгеноструктурного анализа. Но само происхождение рентгеновских спектров элементов в то время не удавалось объяснить теоретически. Такое положение сохранялось до идеи Нильса Бора о квантовой модели атома, которая объяснила происхождение характеристического рентгеновского излучения квантовыми переходами электронов с внешних оболочек атома на внутренние с выделением рентгеновских квантов. Далее последовало открытие Мозли - закон Мозли, связавший частоту спектральных линий с порядковым номером излучающего элемента в периодической таблице Менделеева. Мозли показал, что характеристическое рентгеновское излучение создается внутренними электронами (находящимися вблизи ядра) атома и что оно дает информацию о внутренних электронах атома, как обычный свет о внешних электронах. Пр Генри Мозли было всего лишь 26 лет, когда он в 1913 г. опубликовал результаты своих экспериментов, подтвердив ими предположение голландского исследователя Антониуса ван дер Брука о равенстве заряда ядра атома порядковому номеру соответствующего элемента в периодической системе. Этот труд навеки вписал имя Генри Мозли в историю науки. Мозли считал, что его метод исследования имеет большое будущее, поскольку "он способен привести к открытию еще неизвестных элементов, так как положение соответствующих им характеристических линий рентгеновского излучения можно предсказать заранее". Мозли для практического подтверждения своих идей проводил поиск предсказанных, но не открытых элементов. Он пытался обнаружить с помощью рентгеновских спектров природных объектов элемент номер 72, чья клетка пустовала тогда в таблице элементов слева от тантала (уже открытого к тому времени). Но только спустя 8 лет спектроскопист А.Довийе в 1922 г., используя более совершенную аппаратуру для рентгеноспектрального анализа, обнаружил новый элемент 72 (гафний) в тех же образцах, которые ранее исследовал Мозли. Другим элементом, обнаруженным в природе с помощью рентгеноспектрального анализа, стал рений (открыт супругами Ноддак в 1925 г.). Гафний и Рений оказались последними по времени открытия стабильными химическими элементами на Земле. Характеристический рентгеновский спектр стал "визитной карточкой" элемента. Работа по развитию техники рентгеноспектрального анализа была продолжена шведским физиком-экспериментатором Карлом Манне Георгом Сигбаном. Он разработал новые методы получения детальных рентгеновских спектров и исследовал рентгеновские спектры почти всех химических элементов. Это позволило получить исчерпывающие данные о структуре электронных оболочек атомов. Сигбан изготовил дифракционную решетку для исследования длинноволнового рентгеновского излечения. Тем самым он ликвидировал пробел между жестким (коротковолновым) рентгеновским излучением, которое исследуется с помощью кристаллических решеток, и оптическим ультрафиолетовым излучением, исследуемым с помощью обычной оптической дифракционной решетки. Исследования шведского ученого показали как дополняются электронные оболочки атома при переходе от более легких элементов к тяжелым. Его наблюдения позволили определить, сколько электронов находится в соответствующей оболочке того или иного элемента. Случилось так, что 57 лет спустя Нобелевская премия была вручена Каю Сигбану - сыну Карла Сигбана. Увлекаясь с раннего возраста физикой, Сигбан также занялся исследованием рентгеновского излечения, в частности изучением электронов, выбиваемых рентгеновскими лучами из вещества. В 1951 г, будучи профессором, молодой шведский ученый положил начало новому методу - электронной спектроскопии и использовал его для химического анализа. Основная заслуга этого исследователя состоит в том, что он сконструировал прибор для исследования энергетических спектров электронов, выбиваемых из атомов рентгеновскими лучами. Разработанный им рентгеновский электронный спектрометр оказался исключительно ценным прибором для современной химии. Максимумы электронных спектров соответствуют энергиям связи электронов на внутренних оболочках атомов, что дает возможность исследовать структуру молекул. Метод отличается высокой чувствительностью, что позволяет ограничиваться для анализа поверхностным слоем вещества толщиной не более 50-100 ангстрем. Это дает возможность исследовать процессы коррозии, адсорбции и другие поверхностные химические явления. Приборы для электронной спектроскопии являются непременной составной частью оснащения современной исследовательской лаборатории.
Принцип действия
Здесь мы хотим описать в чем заключается смысл рентгеновской флуоресценции и чем данный метод отличается от других видов анализа. П Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением. Различные электронные орбитали обозначаются K,L,M и.т.д., где К - орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона.
Рис. 1
Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l, где E1 и E2 - энергии орбиталей, между которыми произошел переход электрона, h - постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. П Источником возбуждающего (первичного) излучения высокой энергии является рентгеновская трубка, питаемая высокостабильным генератором высокого напряжения. Механизм возникновения первичного излучения похож на механизм флуоресценции, за исключением того, что возбуждение материала анода трубки происходит при его бомбардировке электронами высоких энергий, а не рентгеновским излучением, как при флуоресценции. Спектральный состав излучения трубки зависит от выбора материала анода. Для большинства областей применения оптимальным является родиевый анод, хотя другие материалы, например молибден, хром или золото, могут быть предпочтительнее в определенных случаях. При проведении анализа все элементы, присутствующие в образце, одновременно излучают фотоны характеристической флуоресценции. Для изучения концентрации какого-либо элемента в образце необходимо из общего потока излучения, поступающего от пробы, выделить излучение такой длины волны, которая является характеристической для исследуемого элемента. Это достигается разложением суммарного потока излучения, поступающего от пробы, по длинам волн и получением спектра. Спектром называется кривая, описывающая зависимость интенсивности излучения от длины волны. Для разложения излучения в спектр (выделения различных длин волн) используются кристалл-анализаторы с кристаллическим плоскостями, параллельными поверхности и имеющими межплоскостное расстояние d.
Рис.2 Если излучение с длиной волны l падает на кристалл под углом q, дифракция возникнет только если расстояния, проходимые фотонами при отражении от соседних кристаллических плоскостей, отличаются на целое число (n) длин волн. С изменением угла q при вращении кристалла по отношению к потоку излучения, дифракция будет возникать последовательно для различных длин волн в соответствии с законом Брэгга: nl = 2d sinq. Угловое положение (q) кристалла-анализатора задается компьютером в зависимости от длины волны, которую нужно выделить из спектра для анализа требуемого элемента. Выделенное излучение поступает в детектор рентгеновского излучения для измерения интенсивности. Интенсивностью называется число фотонов, поступающее за единицу времени. П Так как разделение пиков рентгеновской флуоресценции зависит от соотношения длины волны и межплоскостного расстояния (d), для увеличения селективности и чувствительности аппаратуры, измерение спектра исследуемой пробы в широком диапазоне энергий производят с помощью нескольких кристалл-анализаторов из различных материалов. П Монокристаллы, такие как германий, фторид лития, антимонид индия являются идеальными анализаторами для излучения многих элементов. В последнее время, многослойные синтетические покрытия используются для увеличения чувствительности при анализе легких элементов. Детектирование флуоресцентного излучения основано на преобразовании энергии флуоресценции в импульсы напряжения определенной амплитуды. П пп ло Существуют разные типы детекторов. Для относительно больших длин волн при анализе легких элементов используются наполненные газом пропорциональные детекторы. Их действие основано на ионизации газа излучением и измерении числа электрических импульсов, прошедших через ионизированный газ. Для коротких длин волн (тяжелые элементы) применяются сцинтилляционные детекторы, в которых измеряется ток фотоэлемента, чувствительного к светимости специального вещества - сцинтиллятора (NaI/Tl) при попадания на него рентгеновского излучения. П Чем больше атомов определенного типа в образце, тем больше импульсов регистрирутся детектором.
Рис.3
Счетная электроника фиксирует число импульсов поступающих от детекторов и энергетические уровни соответствующие амплитудам. Современное качество анализирующей техники (усилители и анализаторы импульсов) позволяет во многих случаях получить удовлетворяющую большинство пользователей статистическую погрешность измерений за время всего за 2 секунды. Большее время счета требуется для легких элементов которые излучают относительно небольшое число фотонов с малыми энергиями, либо для анализа элементов с концентрациями близкими к пределу обнаружения.
Рис.4 Анализ и обработка результатов измерений проводится в автоматическом режиме. Для этого разработаны методики анализа многих элементов для различных типов веществ. Методики реализованы в виде компьютерных программ. Во время измерения компьютер управляет всеми узлами спектрометра в соответствии с заданной программой анализа. Современный уровень надежности оборудования и устройство автоматической подачи образцов позволяют выполнять анализ непрерывно круглосуточно без участия оператора. По окончании измерений компьютер выполняет расчет концентраций. Результаты анализа передаются электронными средствами связи автоматически по указанным адресам, либо накапливаются в базе данных измерений для дальнейшей обработки. Существует два типа рентгенофлуоресцентных спектрометров в которых выделение характеристического излучения происходит с помощью кристаллов-анализаторов. Такие спетрометры называются "спектрометры волновой дисперсии". Среди них различают спектрометры последовательного действия и квантометры. Спектрометры последовательного действия ("со сканирующим каналом"): На таких спектрометрах осуществляется последовательное выделение каждой характеристической линии рентгеновского излучения любого числа элементов с помощью движущегося кристалла-анализатора и высокоточного гониометра (прибора для измерения углов), сопряженного с устройством вращения, управляемого компьютером. Преимущества приборов последовательного действия: • Универсальность: определение любого числа элементов.• Оптимальные условия измерения программируются для каждого элемента.• Очень высокая чувствительность, низкие уровни детектирования. Квантометры (спектрометры с фиксированными "каналами") С помощью квантометров осуществляются параллельные измерения. Интенсивности характеристического излучения элементов измеряются одновременно благодаря использованию нескольких настроенных фиксированных "каналов" расположенных вокруг образца. Фактически каждый из них является отдельным спектрометром с кисталл-анализатором и детектором, настроенными на прием определенной длины волны одного элемента. Преимущества квантометров:• Высочайшая скорость анализа при использовании для поточного контроля качества в индустрии.• Малое количество движущихся частей, прекрасная надежность в условиях промышленного предприятия.
Область применения РФА
Современные лаборатории РФА используют новейшие спектрометры, предназначенные для многоэлементного анализа веществ различного происхождения и агрегатного состояния. В основном, это оборудование широко известных мировых производителей рентгеновской аналитической техники. Комплекс лаборатории РФА анализа обычно состоит из устройств пробоподготовки, аналитического инструмента - спектрометра, и программного обеспечения для управления анализом и обработки результатов. За последнее десятилетие достижения в области программного обеспечения для РФА анализа позволяют решать такие задачи, которые не были доступны еще недавно. Потому программному обеспечению принадлежит большая часть аналитических успехов. Итак, какие же задачи можно решить при помощи РФА? Одной из наиболее сложных областей применения РФА является анализ горных пород, руд и продуктов их переработки. Это связано с особенностями этих материалов: в них присутствует множество элементов в диапазоне чувствительности РФА (от 0.0001 до 99%). Многие элементы имеют взаимное концентрационное влияние при анализе, и при этом необходимо их отдельное определение с требуемой точностью. Наиболее простыми объектами РФА (в методическом смысле) являются преимущественно гомогенные материалы техногенного происхождения, состоящие из небольшого числа элементов. К ним относятся металлы, стекла, жидкости. Анализ таких материалов, как правило, не вызывает затруднений в лабораториях, традиционно работающих с более сложными объектами. Лаборатория выполняет количественный, полуколичественный, качественный анализ любых твердых, порошкообразных, жидких и пластичных неорганических объектов. При этом определяются элементы с порядкового номера 8 (кислород) - до 92 (уран), при их концентрации в интервале от 1-5 ppm до 100%. В лаборатории разработаны методики, которые являются основой аналитического процесса и предназначены для анализа макро и микроэлементов. Методики реализованы как программно - аппаратные пакеты, которые применяются для количественного анализа минеральных материалов. В калибровках использовано более 200 межгосударственных, российских и отраслевых стандартных образцов химического состава, благодаря которым выполняется анализ до 60 элементов, если их концентрация находится в рабочем диапазоне метода РФА. На ряду с новейшими методами подготовки проб к анализу (индукционное плавление), это обеспечивает универсальность аналитического процесса для разнообразных типов горных пород и руд и делает возможным рутинный высокопроизводительный анализ. Такие лаборатории предлагают комплексное исследование материалов, обозначив отдельно несколько основных, наиболее востребованных видов аналитических работ: "Силикатный анализ". Определяемые компоненты: Na2O, MgO, Al2O3, SiO2, P2O5, S, K2O, CaO, TiO2, MnO, Fe2O3, ППП. Обычно этот вид анализа требует определения всех элементов макросостава. Тому две причины: 1) одиним из явных признаков качества результатов является сумма компонентов, полученная при анализе. Считается нормальным, если она находится в пределах от 98.5 до 100.5%. 2) Современные алгоритмы вычисления концентраций используют всю доступную, желательно наиболее полную, информацию о макрокомпонентном составе пробы. Поэтому, требуя от лаборатории РФА определения не полного набора компонентов "силикатного анализа". Другой весьма востребованный вид работ: "Анализ микроэлементов". Пример определяемых компонентов: Cr, Sc, V, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Pb, Ba, Th, U, Ga, Cl. Здесь находится куда больше свобод у потребителя результатов, но как всегда - грамотная постановка аналитической задачи - половина успешного анализа. Набор элементов можно менять в широких пределах, отказываясь от ненужных и добавляя требуемые. Здесь следует учитывать, что лаборатории, оснащенные рентгеновскими спектрометрами последовательного действия, могут определять произвольный набор элементов, но при этом, расширение набора определяемых элементов влечет увеличение продолжительности анализа, что сказывается на стоимости. А лаборатории, оснащенные квантометрами (многоканальными спектрометрами) и энергодисперсионными спектрометрами, определяют все заданные элементы одновременно без дополнительных затрат времени на любой следующий элемент, включенный в программу анализа, но при этом многие элементы не могут быть проанализированы из-за конструкционных особенностей таких приборов. Практика современного оснащения РФА лабораторий (покупка приборов) показывает, что исследовательские организации отдают предпочтение последовательным спектрометрам по причине их универсальности, а лаборатории промышленных предприятий - квантометрам из-за их производительности. Еще один из видов анализа методом РФА, который часто используется: "Обзорный полуколичественный анализ" Применяется для исследования объектов различного происхождения. Определяются все элементы c погрешностью 10-20 отн.% при содержании 0.05%-100%. Востребованность такого анализа связана с необходимостью изучения состава единичных проб, для которых нет готовых методик анализа. На практике такая задача регулярно встречается т.к. нет смысла организовывать методические работы продолжительностью в несколько дней чтобы выполнить анализ одной пробы за несколько минут и никогда более не вернуться к использованию созданной методики. Выход из этой ситуации найден в применении специального программного обеспечения и способа измерений, которые позволяют получать надежные результаты анализа любых материалов без использования стандартных образцов. Естественно, качество результатов такого анализа не вписывается в понятие о высокой точности, но его вполне достаточно для решения многих производственных задач. Примеры таких задач - разбраковка металлического лома, преддобычная разметка продуктивности горных выработок, определение главных компонентов неизвестных веществ, сопоставление состава нескольких проб. Скорость получения результатов. Современное оборудование лаборатории обеспечивает при анализе 20-и элементов в каждой пробе (пробы разные по составу) производительность до 100 проб в сутки. При анализе до 5 элементов в каждой пробе (при условии подобия материала проб), производительность оборудования возрастает до 700 проб в сутки. В остальном скорость получения конечных результатов анализа зависит от возможности своевременного выполнения вспомогательных процедур: определение потерь при прокаливании, изготовление препаратов из материала проб и пр. В правильных лабораториях достигнут наилучший баланс между временем измерений пробы в спектрометре и продолжительностью вспомогательных процедур. Это является основой высочайшей производительности метода РФА. Некоторые современные лаборатории РФА предлагают новые возможности эффективного аналитического сервиса: Анализ "On-Line".- Это высокоэкспрессные аналитические испытания, когда результаты анализа доставляются заказчику современными средствами связи в течение 10-30 минут с момента поступления пробы (образца), что имеет особое значение при контроле процессов переработки, при выполнении тестов входящего сырья, выборочном контроле продукции, измерении концентраций экологически-опасных элементов. В этой части обзора мы рассказали лишь о нескольких весьма востребованных приложениях метода РФА. На самом деле, нет областей промышленности, в которых данный метод еще не нашел своего применения. Его универсальность связана с возможностью создания методик требуемой точности для определения широкого круга элементов в самых разнообразных объектах. Некоторые аналитические задачи, легко решенные при использовании современного РФА оборудования: · Массовый анализ горных пород и руд · Экспрессное определение состава продуктов обогащения руд · Определение 10 элементов в легированных сталях · Анализ археологических объектов (монет, серьг, колец, шлаков, костей) · Полуколичественный экспресс анализ шлифованных образцов горных пород · Количественное определение бора в стеклоподобных веществах · Определение Ge(2-5000ppm) в углях и их золах ·
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|