Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Кафедра информатики и прикладной математики

Математический факультет

 

КУРСОВАЯ РАБОТА НА ТЕМУ:

«УМЕНЬШЕНИЕ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ СТАЦИОНАРНОГО СЛУЧАЙНОГО ПРОЦЕССА»

Брест 2009


СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАБОТЕ

2. УМЕНЬШЕНИЕ СМЕЩЕНИЯ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

3. ОКНА ПРОСМОТРА ДАННЫХ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ


ВВЕДЕНИЕ

 

Почти в каждой области встречаются явления, которые интересно и важно изучать в их развитии и изменении во времени. В повседневной жизни могут представлять интерес, например, метеорологические условия, цены на тот или иной товар, те или иные характеристики состояния здоровья индивидуума и т.п. Все они изменяются во времени. Совокупность измерений какой-либо одной характеристики подобного рода и представляет собой временной ряд.

Одной из главных задач спектрального анализа временных рядов является построение и исследование оценок спектральных плотностей стационарных случайных процессов, так как они дают важную информацию о структуре процесса.

Методы анализа временных рядов широко используются в различных областях науки и техники, их можно применять при анализе больших объемов данных, получаемых в процессе вибрационных испытаний или извлекаемых из сводок экономических данных.

В данной работе исследована оценка спектральной плотности, построенная с использованием различных окон просмотра данных. Построены графики этой оценки для временного ряда, представляющего собой последовательность наблюдений - температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

Графики построены также для центрированного случайного процесса.


1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАБОТЕ

Векторным временным рядом (r-мерным временным рядом) называется совокупность функций вида

 

.

 

Переменная t обычно соответствует времени выполнения или регистрации наблюдений и измерений.

Действительным случайным процессом  =  называется семейство случайных величин, заданных на вероятностном пространстве , где , , - некоторое параметрическое множество.

Если , или  - подмножество из , то говорят, что , - случайный процесс с дискретным временем.

Если , или  подмножество из , то говорят, что , - случайный процесс с непрерывным временем.

Введем характеристики случайного процесса , , во временной области.

Математическим ожиданием случайного процесса , , называется функция вида

 

,

 

где .

Дисперсией случайного процесса , , называется функция вида


,

 

где .

Спектральной плотностью случайного процесса , , называется функция вида

 

= ,

,

 

при условии, что

 

.

Нормированной спектральной плотностью случайного процесса  называется функция вида

 

 

где , если  и , если .

Из определения видно, что спектральная плотность непрерывная, периодическая функция с периодом, равным  по каждому из аргументов.

Ковариационной функцией случайного процесса , , называется функция вида


.

Смешанным моментом  го порядка, , случайного процесса , , называется функция вида

 

, , .

 

Заметим, что

 

,

.

Лемма 1.1. Для любого целого р справедливо следующее соотношение

 

.

Доказательство. Если , то доказательство очевидно. Рассмотрим случай . Воспользуемся формулой Эйлера

 

 

тогда


 

Лемма доказана.

Пусть - значения случайного процесса  в точках . Введем функцию

 

,

 

которую будем называть характеристической функцией, где - ненулевой действительный вектор, , .

Смешанный момент  го порядка, , можно также определить как

 

, , .

Смешанным семиинвариантом (кумулянтом)  го порядка, , случайного процесса , , называется функция вида

 

, , ,

 

которую также будем обозначать как .

Между смешанными моментами и смешанными семиинвариантами го порядка, , существуют связывающие их соотношения, которые имеют вид


,

,

 

где суммирование производится по всевозможным разбиениям множества

 

 

, , , , .

 

При

 

,

,

.

 

При

 

Спектральной плотностью случайного процесса , , называется функция вида


= , ,

 

при условии, что

 

 

Из определения видно, что спектральная плотность  непрерывная, периодическая функция с периодом, равным  по каждому из аргументов.

Семиинвариантной спектральной плотностью  го порядка, , случайного процесса , , называется функция вида

= , ,

 

при условии, что

 

.

Теорема 1. Для смешанного семиинварианта  го порядка, , случайного процесса  справедливы представления

 

, .


Пусть  - случайный процесс, заданный на вероятностном пространстве , и

 

 

- мерная функция распределения, где

Случайный процесс  называется стационарным в узком смысле (строго стационарным), если для любого натурального , любых  и любого , такого что  выполняется соотношение

 

 

где

Возьмем произвольное . Пусть , тогда

В дальнейшем функцию, в правой части (1), будем обозначать

 

 

Используя определение стационарного в узком смысле СП , смешанный момент го порядка, , будем обозначать

 

 

Смешанный семиинвариант го порядка, , стационарного в узком смысле СП  будем обозначать


 

Случайный процесс , называется стационарным в широком смысле, если  и

 

Замечание 1. Если , является стационарным в узком смысле СП и  то , является стационарным в широком смысле, но не наоборот.

Спектральной плотностью стационарного случайного процесса , называется функция вида

 

,

 

при условии, что

 

Семиинвариантной спектральной плотностью - го порядка, , стационарного СП , называется функция вида

 


 

 

при условии, что

 

 

Для смешанного семиинварианта -го порядка, , стационарного СП  справедливо следующее соотношение

 

.

 

Для  эти соотношения примут вид

 

.

 

2. УМЕНЬШЕНИЕ СМЕЩЕНИЯ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ

 

Рассмотрим действительный стационарный в широком смысле случайный процесс , , с математическим ожиданием , , взаимной ковариационной функцией , и взаимной спектральной плотностью .

Предположим, имеются Т последовательных, полученных через равные промежутки времени наблюдений  за составляющей , рассматриваемого процесса . Как оценку взаимной спектральной плотности в точке  рассмотрим статистику

 

 (2.1)

 

где , - произвольная, не зависящая от наблюдений четная целочисленная функция,  для , а

 

 (2.2)

 

s – целое число, - целая часть числа .

Статистика , называемая выборочной взаимной спектральной плотностью или периодограммой, задается соотношением

 

 (2.3)

 

определено равенством (2.2).

Предположим, если оценка  взаимной спектральной плотности , построенная по T наблюдениям, является асимптотически несмещенной, то математическое ожидание ее можно представить в виде


 (2.4)

 

где некоторые действительные функции, не зависящие от T,

В качестве оценки взаимной спектральной плотности возьмем статистику

 

,

 

и исследуем первый момент построенной оценки.

Математическое ожидание построенной оценки будет следующее

 

 

Использовав соотношение (2.4), получим

 

 

где

 

 

 

Поскольку


 

следовательно, оценка  является асимптотически несмещенной со смещением, убывающим как .

Так как равенство (2.4) справедливо и при , то, рассматривая оценку

 

 

где

 

 

, то оценка  является асимптотически несмещенной со смещением, убывающим на . Далее рассмотрим оценку

 

 (2.5)

 

Найдем математическое ожидание построенной оценки:


 

где

 

 

 

Следовательно, оценка  является асимптотически несмещенной со смещением, убывающим как .

Найдем явный вид коэффициентов  в представлении (2.4),

Видим, что

 

 

Таким образом, справедливо следующее утверждение.

Теорема 2.1. Оценка  взаимной спектральной плотности  стационарного в широком смысле случайного процесса , задаваемая равенством (2.5), удовлетворяет соотношению

,

,

 

 при условии, что справедливо соотношение (2.4) для

При нахождении моментов оценок спектральных плотностей вторых и высших порядков появляются функции вида

 

 (2.6)

 

где  задаются соотношением

 


3. ОКНА ПРОСМОТРА ДАННЫХ

 

Чтобы выделить определенные характеристики спектральных оценок, нередко прибегают к сглаживанию значений на концах случайного временного ряда. Временное сглаживание представляет собой умножение ряда на «окно данных».

В соотношении (2.3) введена функция , называемая окном просмотра данных (множителем сходимости, коэффициентом сглаживания).

Функцию

 

(3.1)

 

 называют частотным окном. Из соотношения (3.1) вытекает, что

 

 

Характерное поведение функции  состоит в том, что она становится все более сконцентрированной в окрестности нуля при .

Примеры окон просмотра данных:

1. 1 – окно Дирихле;

2. 1-  – окно Фейера;

3. ;

4.  – окно Хэннинга;

5.  – окно Хэмминга;

6.  – окно Хэмминга;

7. , где  – окно Хэмминга;

8. 1-  – окно Рисса.


ЗАКЛЮЧЕНИЕ

 

В данной работе исследована оценка спектральной плотности вида

 

 

где , а периодограмма задана следующим соотношением

 

 

Построены графики этой оценки для различных окон данных на основании данных, представляющих собой последовательность наблюдений - температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

Графики построены также для центрированного случайного процесса.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Андерсон Т. Статистический анализ временных рядов. – М.: Мир, 1976. – 755 с.

2. Бриллинджер Д. Временные ряды. Обработка данных и теория. - М.: Мир, 1980. - 536 с.

3. Журбенко И.Г. Спектральный анализ временных рядов. - М.: Изд-во МГУ, 1982. - 168 с.

4. Труш Н.Н. Асимптотические методы статистического анализа временных рядов. – Мн.: БГУ, 1999. - 218 с.

5. Труш Н.Н., Мирская Е.И. Случайные процессы. Преобразования Фурье наблюдений. – Мн.: БГУ, 2000.


ПРИЛОЖЕНИЕ

 

Для исследования оценки (3.1) был исследован ряд, состоящий из 176 наблюдений ежедневной температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.

 

Рис. 1 - График оценки спектральной плотности (2.1) для окна Дирихле

 

Рис. 2 - График оценки спектральной плотности (2.1) для окна Дирихле для центрированного случайного процесса


Рис. 3 - График оценки спектральной плотности (2.1) для окна Фейера

 

Рис. 4 - График оценки спектральной плотности (2.1) для окна Фейера для центрированного случайного процесса

 

Рис. 5 - График оценки спектральной плотности (2.1) для окна вида 3


Рис. 6 - График оценки спектральной плотности (2.1) для окна вида 3 для центрированного случайного процесса

 

Рис. 7 - График оценки спектральной плотности (2.1) для окна Хэннинга

 

Рис. 8 - График оценки спектральной плотности (2.1) для окна Хэннинга для центрированного случайного процесса


Рис. 9 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5

 

Рис. 10 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5 для центрированного случайного процесса

 

Рис. 11 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6


Рис. 12 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6 для центрированного случайного процесса

 

Рис. 13 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7

 

Рис. 14 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7 для центрированного случайного процесса


Рис. 15 - График оценки спектральной плотности (2.1) для окна Рисса

 

Рис. 16 - График оценки спектральной плотности (2.1) для окна Рисса для центрированного случайного процесса

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...