Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Соотношение специально- организованного обучения, совместной и самостоятельной деятельности в организации математического развития дошкольников.




 

Математическое развитие осуществляется во всех структурах педагогического процесса: в совместной деятельности взрослого с детьми (непосредственно образовательная деятельность и режимные моменты), самостоятельной детской деятельности, тем самым, детям предоставляется возможность анализировать, сравнивать, обобщать.

 

Главную педагогическую задачу интеллектуального развития дошкольников Л.М. Кларина видит в создании таких условий, при которых у ребенка возникло бы желание научиться и имелась бы возможность это сделать. Такое желание возникает тогда, когда он сталкивается с трудностью, когда для его преодоления необходимо овладеть новыми умениями, когда проявляется потребность учиться, когда он получает удовольствие в процессе учения и когда, наконец, на помощь ребенку приходит игра - это самостоятельное открытие мира. Но интерес к игре пропадает, если вовремя не внести в нее нечто новое, что вновь приведет к открытиям. Словом, играть и учиться - вот правило работы с дошкольниками. Причем учиться нужно так, чтобы это воспринималось как игра, как самоценная деятельность, результат и процесс которой интересен ребенку и доставляет ему удовольствие. Лишение детей удовольствия, инициативы, как правило, ведет к потере игры.

 

НОД как основная форма организации обучения нашло свое подтверждение в исследованиях A.M. Леушиной.

 

В последние годы учебная модель организации образовательного процесса подвергается критике за жесткую регламентацию детской деятельности. Однако, отказаться от нее полностью нецелесообразно. От проведения занятий не отказываются программы -"Радуга", "Развитие", "Детство".

Комплексно-тематическая модель - допускает вариативность позиций взрослого (в какие-то моменты он выполняет роль учителя; в какие-то роль партнера по деятельности.

Предметно-средовая модель - обучение математике направлено на преодоление стандартного подхода к детям, предоставление им большой самостоятельности, индивидуализацию образовательного процесса. Роль взрослого заключается в организации развивающей предметной среды, в готовности его подключиться в любой момент к деятельности ребенка.

 

Н.Я. Михайленко и Н.А. Короткова в ориентирах и требованиях к обновлению содержания дошкольного образования указывают, что наиболее эффективная модель "сборная", в соответствии с которой весь образовательный процесс в ДОУ разделяется на 3 блока:

 

1) специально организованное обучение в форме НОД;

2) совместная деятельность взрослого с детьми, строящаяся на непринужденной, необязательной форме;

3) совместная самостоятельная деятельность самих детей.

 

Эта модель хорошо вписывается современный образовательный процесс по формированию математических представлений:

- регламентированные НОД по математике готовят ребенка к школе (в плане введения в базовые академические понятия и подготовки в психологическом плане);

- в совместной деятельности происходит опосредованное обучение на основе сотрудничества и сотворчества взрослого с ребенком,

- в ходе свободной самостоятельной деятельности создаются условия для его творческой самореализации.

 

Н.Я. Михайленко, Н.А. Короткова справедливо утверждают, что по отношению к детям воспитатель может занимать различные позиции:

- позицию учителя, который ставит перед детьми задачи и определяет способы их решения, при этом находясь в положении "над" ребенком: позицию включенного в деятельность равного партнера, ненавязчиво рекомендуя детям различные способы их более рациональной деятельности, выполняемой вместе с ними;

- позицию создателя развивающей среды, предоставляя детям возможность действовать свободно и самостоятельно.

12. Требования к организации занятий в разных возрастных группах.

Полноценное математическое развитие обеспечивает организованная, целенаправленная деятельность, в ходе которой воспитатель продуманно ставит перед детьми познавательные задачи, помогает найти адекватные пути и способы их решения.

Формирование элементарных математических представлений у дошкольников осуществляется на занятиях и вне их, в детском саду и дома.

Занятия (НОД) являются основной формой развития элементарных математических представлений в детском саду. На них возлагается ведущая роль в решении задач общего умственного и математического развития ребенка и подготовки его к школе.

Занятия по формированию элементарных математических представлений (ФЭМП) у детей строятся с учетом общедидактических принципов: научности, системности и последовательности, доступности, наглядности, связи с жизнью, индивидуального подхода к детям и др.

Во всех возрастных группах занятия проводятся фронтально, т. е. одновременно со всеми детьми. Лишь во второй младшей группе в сентябре рекомендуется проводить занятия по подгруппам (6—8 человек), охватывая всех детей, чтобы постепенно приучить их заниматься вместе.

Количество занятий определено в так называемом «Перечне занятий на неделю», содержащемся в Программе детского сада. Оно относительно невелико: одно (два в подготовительной к школе группе) занятие в неделю.

С возрастом детей увеличивается длительность занятий: от 15 минут во второй младшей группе до 25—30 минут в подготовительной к школе группе.

Поскольку занятия математикой требуют умственного напряжения, их рекомендуют проводить в середине недели в первую половину дня, сочетать с более подвижными физкультурными, музыкальными занятиями или занятиями по изобразительному искусству.

 

Каждое занятие занимает свое, строго определенное место в системе занятий по изучению данной программной задачи, темы, раздела, способствуя усвоению программы развития элементарных математических представлений в полном объеме и всеми детьми.

 

В работе с дошкольниками новые знания даются небольшими частями, строго дозированными «порциями». Поэтому общую программную задачу или тему обычно делят на ряд более мелких задач — «шагов» и последовательно реализуют их на протяжении нескольких занятий.

 

Например, вначале дети знакомятся с длиной, затем шириной и, наконец, высотой предметов. Для того чтобы они научились безошибочно определять длину, ставится задача распознавания длинной и короткой полосок путем их сравнения приложением и наложением, затем подбирается из ряда полосок разной длины такая, которая соответствует предъявленному образцу; далее на глаз выбирается полоска самая длинная (или самая короткая) и одна за другой укладываются в ряд. Так, длинная полоска на глазах самого ребенка становится более короткой по сравнению с предыдущей, а это раскрывает относительность смысла слов длинный, короткий.

Такие упражнения постепенно развивают глазомер ребенка, приучают видеть отношения между размерами полосок, вооружают детей приемом сериации (укладывание полосок по возрастающей или убывающей длине). Постепенность в усложнении программного материала и методических приемов, направленных на усвоение знаний и умений, позволяет детям почувствовать успехи в своей работе, свой рост, а это в свою очередь способствует развитию у них все большего интереса к занятиям математикой.

 

Решению каждой программной задачи посвящается несколько занятий, и затем в целях закрепления к ней неоднократно возвращаются в течение года.

Количество занятий по изучению каждой темы зависит от степени ее трудности и успешности овладения ею детьми. Поквартальное распределение материала в программе каждой возрастной группы на протяжении учебного года позволяет полнее реализовать принцип системности и последовательности.

На занятиях, кроме «чисто» образовательных, ставятся также и задачи по развитию речи, мышления, воспитанию качеств личности и черт характера, т. е. разнообразные воспитательные и развивающие задачи.

В летние месяцы (V квартал) занятия по обучению математике ни в одной из возрастных групп не проводятся. Полученные детьми знания и умения закрепляются в повседневной жизни: в играх, игровых упражнениях, на прогулках и т. д.

 

Программное содержание занятия обусловливает его структуру.

В структуре занятия выделяются отдельные части: от одной до четырех-пяти в зависимости от количества, объема, характера задач и возраста детей.

Часть занятия как его структурная единица включает упражнения и другие методы и приемы, разнообразные дидактические средства, направленные на реализацию конкретной программной задачи.

Общая тенденция такова: чем старше дети, тем больше частей в занятиях. В самом начале обучения (во второй младшей группе) занятия состоят из одной части. Однако не исключается возможность проведения занятий с одной программной задачей и в старшем дошкольном возрасте (новая сложная тема и т. д.). Структура таких занятий определяется чередованием разных видов деятельности детей, сменой методических приемов и дидактических средств.

Все части занятия (если их несколько) достаточно самостоятельны, равнозначны и вместе с тем связаны друг с другом.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...