Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Общие сведения по КИХ-фильтрам

Содержание

 

Введение

Общие сведения по КИХ-фильтрам

Расчет цифрового фильтра

Модель цифрового фильтра и описание блоков модели

Моделирование работы цифрового фильтра в MatLab

 


Введение

 

С физической точки зрения цифровая фильтрация – это выделение в определенном частотном диапазоне с помощью цифровых методов полезного сигнала на фоне мешающих помех (рис. 1).

 

 

Рис. 1 Фильтрация помех с помощью цифрового ПФ.

 

По своим частотным свойствам фильтры делятся на:

– фильтры нижних частот (ФНЧ) – Low pass – рис.2а;

– фильтры верхних частот (ФВЧ) – High pass – рис.2б;

– полосовые фильтры (ПФ) – Band pass – рис.2в;

– режекторные фильтры (РФ) – Band stop – рис.2г.

 


Рис. 2 Идеальные частотные характеристики фильтров.

 

На рис. 2 приняты следующие обозначения:

ПП – полоса пропускания – частотная область, внутри которой сигналы проходят через фильтр практически без затухания;

ПЗ – полоса задерживания – выбирается разработчиком такой, чтобы обеспечить затухание сигнала не хуже заданного;

Переходная полоса – частотная область между ПП и ПЗ (характеризуется скоростью спада, обычно выражается в дБ/декаду);

fп - частота среза полосы пропускания – точка на уровне 3дБ;

fз - частота среза полосы задерживания – определяется уровнем пульсаций ЧХ в ПЗ;

fнп, fвп – нижняя и верхняя частоты среза полосы пропускания;

fнз, fвз – нижняя и верхняя частоты среза полосы задерживания.

Частота среза в этом случае является условной границей между частотой среза полосы пропускания и частотой среза полосы задерживания.

АЧХ реальных фильтров (рис. 3, на примере ФНЧ) имеют пульсации в полосе пропускания δп и задерживания δз (нестабильность ЧХ в ПП и ПЗ). Часто в литературе они имеют другое название:

Rз – максимальное подавление в полосе задерживания, дБ;

Rп – минимальное подавление в полосе пропускания, дБ.

Пульсации ЧХ в ПП вносят определенные искажения в сигнал, поэтому они более значимы при определении параметров цифровых фильтров.

 

Рис. 3 Реальная АЧХ цифрового фильтра (на примере ФНЧ).

 

Математически работа цифрового фильтра во временной области описывается разностным уравнением:

 

, (1)

 

где  и  - - тые отсчеты входного и выходного сигналов фильтра, взятые через интервал ;  и  – постоянные коэффициенты цифрового фильтра.

Цифровые фильтры принято делить на два класса:

− нерекурсивные фильтры;

− рекурсивные фильтры.

Нерекурсивные фильтры называют еще фильтрами с конечной импульсной характеристикой (КИХ-фильтры), а рекурсивные фильтры - фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры). В иностранной литературе их называют:

− FIR (Finite Impulse Response) – фильтр с конечной импульсной характеристикой;

− IIR (Infinite Impulse Response) – фильтр с бесконечной импульсной характеристикой.

Если в выражении (1) положить коэффициенты , то фильтр, реализующий этот алгоритм, называется нерекурсивным. Его работа описывается уравнением:

 

, (2)

 

вычисляющим свертку двух последовательностей: коэффициентов  и дискретных отсчетов входного сигнала .

Если хотя бы один коэффициент , то фильтр, реализованный согласно выражения (1), называется рекурсивным. Очевидно, что БИХ-фильтр представляет собой устройство с обратной связью, а КИХ-фильтр - без обратной связи.

 


Общие сведения по КИХ-фильтрам

 

Нерекурсивные фильтры работают в соответствии с выражением (2). Раскроем сумму:

 

 (3)

 

КИХ-фильтр производит взвешенное суммирование (с коэффициентами ) предшествующих отсчетов входного сигнала. Величину  называют порядком фильтра,  – шаг дискретизации. Структурная схема КИХ-фильтра представлена на рис. 4.

 

Рис. 4 Структурная схема КИХ-фильтра.

 

В этом фильтре дискретные выборки из сигнала , задержанные на интервалы , взвешиваются с коэффициентами  и суммируются с образованием отклика . Фильтр, представленный на рис. 4 называют еще трансверсальным фильтром. Основными элементами фильтра являются:

− линия задержки с  отводами;

 умножителей;

− многовходовый параллельный сумматор.

КИХ-фильтры всегда устойчивы. Форма частотной характеристики КИХ-фильтров слабо чувствительна к точности коэффициентов. Главным преимуществом КИХ-фильтра является линейность его ФЧХ.

Z - преобразование (3):

 

. (4)

 

Тогда передаточная характеристика КИХ-фильтра:

 

. (5)

 

Если в (2.9) произвести замену , то ЧХ КИХ- фильтра будет иметь вид:

 

. (6)

 

Из выражения (6) следует, что при заданном (фиксированном) шаге дискретизации  можно реализовать самые разнообразные формы ЧХ цифрового фильтра, подбирая (рассчитывая) должным образом весовые коэффициенты .

 

Расчет цифрового фильтра

 

Расчет цифрового фильтра будем проводить в пакете программ MatLab с помощью инструмента Filter Design & Analysis Tool.

После расчета цифрового фильтра в инструменте Filter Design & Analysis Tool получились значения для порядка фильтра, графики АЧХ и ФЧХ.

Порядок фильтра .

Графики АЧХ в линейном и логарифмическом масштабах показаны на рис. 5 и рис 6 соответственно.

 

Рис. 5 График АЧХ в линейном масштабе.

 

Рис. 6 График АЧХ в логарифмическом масштабе.

 

Графики АЧХ в логарифмическом масштабе и ФЧХ, где фаза измеряется в радианах, показаны на рис. 7.

 


Рис. 7 Графики АЧХ и ФЧХ.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...