Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Графическое представление критерия




Графически это будет выглядеть как "пучок" ломаных линий с изломами в одних и тех же местах. На Рис. 3.5 представлены графики изменения времени решения анаграмм' в ходе эксперимента по исследо­ванию интеллектуальной настойчивости. Мы видим, что "сырые" значе­ния пяти испытуемых дают довольно-таки "рассыпающийся" пучок, хотя и с заметной тенденцией к излому в одной и той же точке - на анаграмме № 2. На Рис. 3.6 представлены графики, построенные по ранжированным данным того же исследования. Мы видим, что здесь "пучок" собран практически в одну жирную линию, с единственной вы­бивающейся из него кривой. В сущности, критерий χ2 r позволяет нам оценить, достаточно ли согласованно изгибается пучок при переходе от условия к условию. χ2 r тем больше, чем более выраженными являются различия.

Ограничения критерия

1. Нижний порог: не менее 2-х испытуемых (n ≥2), каждый из которых прошел не менее 3-х замеров (с≥3).

2. При с=3, n9, уровень значимости полученного эмпирического зна­чения χ2 rопределяется по Таблице VII-A Приложения 1; при с=4, n ≤4, уровень значимости полученного эмпирического значения χ2 r определяется по Таблице VII-Б Приложения 1; при больших коли­чествах испытуемых или условий полученные эмпирические значения χ2 rсопоставляются с критическими значениями χ2 r, определяемыми по Таблице IX Приложения 1. Это объясняется тем, что χ2 rимеет распределение, сходное с распределением χ2 r. Число степеней свобо­ды v определяется по формуле:

v =c—1,

где с - количество условий измерения (замеров).

Пример

На Рис. 3.5. представлены графики изменения времени решения анаграмм в эксперименте по исследованию интеллектуальной настойчи­вости (Сидоренко Е. В., 1984). Анаграммы нужно было подобрать таким образом, чтобы постепенно подготовить испытуемого к самой трудной - а фактически неразрешимой - задаче. Иными словами, испы­туемый должен был постепенно привыкнуть к тому, что задачи стано­вятся все более и более трудными, и что над каждой последующей анаграммой ему приходится проводить больше времени. Достоверны ли различия во времени решения испытуемыми анаграмм?

Таблица 3.5

Показатели времени решения анаграмм (сек.)

Код имени испытуемого Анаграмма 1: КРУА (РУКА) Анаграмма 2: АЛСТЬ (СТАЛЬ) Анаграмма 3: ИНААМШ (МАШИНА)
1. Л-в 2. П-о 3. К-в 4. Ю-ч 5. Р-о   235*[11]  
Суммы      
| Средние 10,2 248,8 9,4

Проранжируем значения, полученные по трем анаграммам каж­дым испытуемым. Например, испытуемый К-в меньше всего времени провел над анаграммой 1 - следовательно, она получает ранг 1. На вто­ром месте у него стоит анаграмма 3 - она получает ранг 2. Наконец, анаграмма 2 получает ранг 3, потому что она решалась им дольше двух других.

Сумма рангов по каждому испытуемому должна составлять 6.

Расчетная общая сумма рангов в критерии определяется по формуле:

где n - количество испытуемых

с - количество условий измерения (замеров).

В данном случае,

Таблица 3.6

Показатели времени решения анаграмм 1, 2, 3 и их ранги (n= 5)

Код имени испытуемого Анаграмма 1 Анаграмма 2 Анаграмма 3
    Время (сек) Ранг Время (сек) Ранг Время (сек) Ранг
1. Л-в            
2. П-о            
3. К-в            
4. Ю-ч            
5. Р-о            
Суммы            

 

Общая сумма рангов составляет: 6+15+9—30, что совпадает с расчетной величиной.

Мы помним, что испытуемый Л-в провел 3 минуты и 55 сек над решением второй анаграммы, но так и не решил ее. Поскольку он ре­шал ее дольше остальных двух анаграмм, мы имеем право присвоить ей ранг 3. Ведь назначение трех первых анаграмм - подготовить испытуе­мого к тому, что над следующей анаграммой ему, возможно, придется думать еще дольше, в то время как сам факт нахождения правильного ответа не так существен.

Сформулируем гипотезы.

Н0: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, являются случайными.

H1: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, не являются случайными.

Теперь нам нужно определить эмпирическое значение χ2 rпо формуле:

где с - количество условии;

п - количество испытуемых;

Тi - суммы рангов по каждому из условий.

 

Определим χ2 rдля данного случая:

Поскольку в данном примере рассматриваются три задачи, то есть 3 условия, с=3. Количество испытуемых n= 5. Это позволяет нам воспользоваться специальной таблицей χ2 r, а именно Табл. VII-A При­ложения 1. Эмпирическое значение χ2 r=8,4 при с=3, n= 5 точно соот­ветствует уровню значимости р=0,0085.

Ответ: Но отклоняется. Принимается H1. Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, неслучайны (р=0,0085).

Теперь мы можем сформулировать общий алгоритм действий по применению критерия χ2 r.

 

АЛГОРИТМ 10

Подсчет критерия χ2 rФридмана

1.Проранжировать индивидуальные значения первого испытуемого, полученные им в 1-м, 2-м, 3-м и т. д. замерах.

2.Проделать то же самое по отношению ко всем другим испытуемым.

3.Просуммировать ранги по условиям, в которых осуществлялись за­меры. Проверить совпадение общей суммы рангов с расчетной сум­мой.

4.Определить эмпирическое значение χ2 rпо формуле:

где с - количество условии;

п - количество испытуемых;

Ti - суммы рангов по каждому из условий.

5.Определить уровни статистической значимости для χ2 r

а)при с=3, n< 9 - по Табл. VII-A Приложения 1;

б)при с=4, n<4 - по Табл. VII-Б Приложения 1.

6.При большем количестве условий и/или испытуемых - определить количество степеней свободы v по формуле:

v =c-1,

где с - количество условий (замеров).

По Табл. IX Приложения 1 определить критические значения кри­терия χ2 при данном числе степеней свободы V.

Если χ2 r эмп равен критическому значению χ2 или превышает его, различия достоверны.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...