Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Экспоненциальное сглаживание

 

В настоящее время для учета степени «устаревания» данных во взвешенных скользящих средних используются веса, подчиняющиеся экспоненциальному закону, т.е. применяется метод экспоненциальных средних. Смысл экспоненциальных средних состоит в том, чтобы найти такие средние, в которых влияние прошлых наблюдений затухает по мере удаления от момента, для которого определяются средние. Веса в экспоненциальных средних устанавливаются в виде коэффициентов α (ΙαΙ < 1). Веса по времени убывают экспоненциально, а сумма весов стремится к 1. В качестве весов используется ряд:

 

; ; ;  и т.д.


Экспоненциальная средняя определяется по формуле Р. Брауна:

 

,

 

где  – экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; α – вес текущего наблюдения при расчете экспоненциальной средней;  –фактический уровень динамического ряда в момент времени t;  –экспоненциальная средняя предыдущего периода.

Как видно из формулы, сглаженный по экспоненциальной средней уровень динамического ряда есть не что иное, как линейная комбинация двух величин: фактического уровня динамического ряда на момент времени t, т.е. , и среднего уровня (), рассчитанного для предыдущего периода. Таким образом, экспоненциальная средняя () формируется под влиянием всех предшествующих уровней ряда от его начала до момента t включительно.

Вес, с которым участвует каждый уровень динамического ряда в определении экспоненциальных средних, зависит от параметра сглаживания . Поэтому при использовании экспоненциальных средних в прогнозировании одной из важных проблем является выбор оптимального значения параметра .

Если коэффициент  близок к 0, то веса, по которым взвешиваются уровни динамического ряда, убывают медленно, и при прогнозе в этом случае учитываются все прошлые наблюдения. Если  близок к 1, то при прогнозировании учитываются в основном наблюдения последних лет, чем ближе  к 1, тем в большей мере сглаженные уровни воспроизводят фактические уровни динамического ряда.


Экспоненциальное сглаживание при разных значениях параметра

Года

у

Экспоненциальные средние при α

α=0,1

α=0,3

α=0,5

α=0,7

α=0,9

1991

6

6

6

6

6

6

1992

93

14,7

32,1

49,5

66,9

84,3

1993

693

82,53

230,37

371,25

505,17

632,13

1994

3554

429,677

1227,459

1962,625

2639,351

3261,813

1995

7350

1121,709

3064,221

4656,313

5936,805

6941,181

1996

9012

1910,738

4848,555

6834,156

8089,442

8804,918

1997

10751

2794,765

6619,288

8792,578

9952,532

10556,39

1998

11157,5

3631,038

7980,752

9975,039

10796,01

11097,39

1999

16838,5

4951,784

10638,08

13406,77

15025,75

16264,39

2000

21671,2

6623,726

13948,01

17538,98

19677,57

21130,52

2001

30485,2

9009,873

18909,17

24012,09

27242,91

29549,73

2002

39031,3

12012,02

24945,81

31521,7

35494,78

38083,14

2003

54365,1

16247,32

33771,6

42943,4

48704

52736,9

2004

66714,2

21294,01

43654,38

54828,8

61311,14

65316,47

 

Как видим, уже при =0,9 экспоненциальные средние практически воспроизводят сам динамический ряд и не характеризует тренд. Выбор константы сглаживания  достаточно произволен. Обычно используются значения  в диапазоне от 0,1 до 0,5. При краткосрочных прогнозах чаще используется указанный диапазон значений : при повышении  увеличивается вес последних наблюдений. А для сглаживания случайных колебаний  уменьшается. При увеличении срока прогноза более поздняя информация должна иметь несколько меньший вес, т.е. величина уменьшается.

Вычисление прогноза по методу экспоненциальных средних

При использовании экспоненциальных средних в прогнозировании каждый новый прогноз основывается на предыдущем прогнозе:

 

,


где  - прогноз для периода t;  - прогноз для периода (t-1);  - сглаживающая константа;  - фактический уровень для периода (t-1).

Рассмотренный метод прогнозирования относится к классу адаптивных методов. Применительно к прогнозированию процесс адаптации состоит в том. Что при прогнозе на период t учитывается ошибка предыдущего прогноза, т.е. каждый новый прогноз  получается в результате корректировки предыдущего прогноза с учетом его ошибки.

Экспоненциальное сглаживание – широко распространенный метод прогнозирования из-за легкости вычисления. Для коротких временных рядов, которые часто встречаются в экономике, важным представляется выбор начальной оценки прогноза. Для этой цели могут быть использованы разные приемы: среднее значение нескольких первых периодов; субъективные оценки, полученные экспертным путем; первое фактическое значение уровня динамического ряда как прогноз для периода 2. Если принять последний подход, то при =0,3, получим прогнозные те же оценки, но сдвинутые на один год.

Рассмотренные экспоненциальные средние представляют собой средние первого порядка, т.е. средние, полученные при сглаживании уровней динамического ряда (первичное сглаживание). При прогнозировании могут использоваться экспоненциальные средние более высоких порядков, т.е. средние, полученные путем многократного сглаживания.


 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...