Миграция радионуклидов в сеяные луговые травы
В связи с выведением из сельскохозяйственного производства значительных площадей естественных лугов и пастбищ, подвергшихся загрязнению радиоактивными выбросами в результате аварии на ЧАЭС, все большую актуальность приобретает проблема получения экологически чистой продукции в зонах с относительно невысоким (1—5 Ки/км2) уровнем радионуклидов в почве. Создание сенокосов на загрязненных территориях сопряжено с разработкой системы агротехнических мероприятий, которые позволили бы, с одной стороны, поддерживать оптимальный уровень продуктивности травостоев и качества кормов, с другой — способствовали эффективному снижению аккумуляции радионуклидов в надземной массе кормовых культур. Поэтому начиная уже с 1986 г. нами в условиях дерново-подзолистых супесчаных почв Мозырского района Гомельской области исследовалось влияние структуры агроценоза, минеральных удобрений и обработки почвы на миграцию основных дозообразующих радионуклидов в системе почва—растение. Радиологические исследования выполнялись на оказавшихся в зоне радиоактивного загрязнения опытах, которые были заложены в 1985 г. с целью изучения агротехнических и агрофитоценотических приемов повышения устойчивости и продуктивности агроценозов многолетних кормовых трав. После распада короткоживущих радионуклидов в 1987 г. экспозиционная доза излучения в месте расположения опытного участка составляла на высоте 1 м над поверхностью почвы 70—80 мкР/ч, на поверхности почвы — 80—100 мкР/ч, плотность радиоактивного загрязнения в слое почвы 0—5 см составляла 4—4,5 Ки/км2. Таким образом, представлялась возможность исследовать динамику миграции радионуклидов в сеянце луговые травы на ненарушенной почве.
Опыты закладывались по следующим схемам. Опыт 1. Одновидовые посевы и парные травосмеси на двух фонах минерального питания: 1) люцерна синегибридная, 2) ежа сборная, 3) кострец безостый, 4) тимофеевка луговая, 5) люцерна+ежа, 6) люцерна+кострец, 7) люцерна+тимофеевка. Опыт 2. Одновидовые посевы бобовых трав на фоне Р90К120: клевер луговой, клевер розовый, клевер ползучий, клевер горный, люцерна синегибридная, люцерна серповидная, ляд-венец рогатый, астрагал солодколистный, эспарцет песчаный. Повторность опыта трехкратная. Площадь опытных делянок 15 и2. Почвенные и растительные образцы отбирались перед укосами. Радиоэкологический мониторинг осуществляли в течение вегетационных сезонов 1986—1988 гг. Учитывая поверхностный характер загрязнения радионуклидами и слабую вертикальную миграцию их на автоморфных дерново-подзолистых почвах, в 1989 г. исследовали влияние перепашки почвы под многолетними травами на характер накопления радионуклидов в органах вновь высеянных растений. Для этого в конце вегетационного периода 1988 г. дернина опытного участка была распахана, а весной 1989 г. после дискования и культивации высеяны клеверо-ежовая и люцерно-ежовая травосмеси. Фон минерального питания — предпосевное внесение полной дозы N12oP9oKi2o, а затем поукосно — фосфорно-калийных удобрений (PSoKi2c). Контролем служили нераспаханные участки со старовозрастным травостоем. Установлено, что суммарная радиоактивность почвы опытных участков в слое 0—5 см последовательно снижалась с мая до сентября 1986 г. в диапазоне 10~7—10~~8 Ки/кг, достигнув относительно стабильного уровня в мае 1987 г. Удельная гамма-активность почвы (еще не нарушенной) начиная с этого времени соответствовала плотности загрязнения 2,6—3,0 Ки/км2 (опыт 1) и 2,1—2,3 Ки/км2 (опыт 2). Сравнение кривых динамики радиоактивности почвы и сеяных трав показывает, что более резкое снижение уровня радиоактивного загрязнения растений по сравнению с почвой за вегетационный период 1986 г. обусловлено не только распадом короткоживущих радионуклидов, но и в значительной степени ослаблением поверхностного загрязнения листьев трав радиоактивными выпадениями. По уровню этого загрязнения в мае 1986 г., довольно четко выделяется группа клеверов (клевер луговой, ползучий и розовый), а также лядвенец рогатый, что связано с опушенностью листовой поверхности этих трав.
Поверхностное загрязнение люцерны посевной, люцерны серповидной, астрагала и эспарцета было существенно ниже, чем клеверов и лядвенца. Различия сохранились в основном и у растений 2-го укоса (июль 1986 г.) у клевера лугового и розового удельная радиоактивность надземной фитомассы почти на порядок превышала показатели других видов, а в 3-м укосе (сентябрь 1986 г.) максимальная величина радиоактивности отмечена у сильно опушенного клевера горного. В отличие от бобовых трав у многолетних злаков (ежи сборной, костреца безостого, тимофеевки луговой) растения 3-го укоса в 1986 г. отличались уже на порядок меньшими показателями. Известно, что видовые и сортовые различия в накоплении основных дозообразующих радионуклидов (l37Cs и 90Sr) кормовыми растениями являются теоретической основой для разработки целенаправленного подбора сельскохозяйственных растений как способа фитомелиорации почв, загрязненных радиоизотопами, и средства для уменьшения содержания радионуклидов в продукции. Но дезактивирующий эффект выноса радиоизотопов с надземной массой растений, обладающих высокой накопительной способностью, значительно уступает по степени очищения почвы эффекту за счет естественного радиоактивного распада. Поэтому подбор культур для севооборотов и агротехнических приемов их рационального возделывания в загрязненных зонах остается в настоящее время одним из реальных способов получения относительно «чистой» кормовой продукции. По данным С. К- Фирсаковой (1974), накопление 90Sr сеяными многолетними злаками после механической обработки и перезалужения дерново-подзолистой почвы снизилось в 5—16 раз, а торфяной почвы — в 14—31 раз по сравнению с естественными лугами.
Основной агротехнический прием, ограничивающий поступление цезия-134 и цезия-137 из почвы в растение,— применение калийных удобрений — связан с антагонистическим характером отношения цезия и калия в почвенном растворе и эффектом «разбавления» в надземной массе растений. Это нашло подтверждение и в исследованиях белорусских ученых (Шугля, Агеец, 1990). Калийные удобрения в комплексе с другими удобрениями снижают поступление цезия-137 в сельскохозяйственные растения в 2—20 раз. Нейтрализация кислотности почвенного раствора известкованием уменьшает накопление цезия-137 в урожае в 2—4 раза, а на легких по гранулометрическому составу почвах увеличение дозы фосфорных и калийных удобрений на фоне известкования снижает накопление изотопа цезия в растениях до 4—5 раз. К сожалению, роль азотных удобрений в миграции основных дозообразователей из почвы в хозяйственно ценную часть кормовых травянистых растений освещена весьма противоречиво. Многие исследования свидетельствуют об усилении под влиянием минерального азота процесса миграции радиоактивного цезия в надземные органы кормовых растений, особенно на высокоплодородных почвах. Так, при внесении азота в аммонийной форме на черноземе концентрация цезия-137 в горохе возрастала на 18—52%, а на дерново-подзолистой почве — на 72— 83%. В то же время азот, внесенный в виде нитратов, практически не влиял на накопление радиоактивного цезия в урожае. Также противоречивы сведения о значении минерального азота в пострадиационном восстановлении структур растительной клетки. В настоящее время считается целесообразным на почвах, загрязненных цезием-137 и стронцием-90, применять азотные удобрения в составе полной минеральной подкормки со значительным преобладанием калия и фосфора (Алексахин и др., 1991). Внесение азотных удобрений рекомендуется проводить в таких дозах, которые обеспечивают наиболее высокие прибавки урожая в данных почвенных условиях. [1] Учитывая нерешенность проблемы растительного белка в Беларуси (дефицит переваримого протеина составляет в среднем 20—25%, в связи с чем себестоимость кормовой продукции возрастает в 1,5 раза, а расход кормов — в 1,3—1,4 раза), весьма актуально изучение роли азотных удобрений в миграции радионуклидов в сеяные травы и регуляции этого процесса агрофитоценотическими приемами.
Исследования влияния структуры посева и азотных удобрений на аккумуляцию радиоизотопов цезия, стронция и плутония в надземной фитомассе люцерны и злаковых трав в монокультуре и смешанных посевах выявили ряд особенностей этого процесса, обусловленных как фитоценотическими факторами, так и воздействием минерального азота, вносимого в почву в виде калийной селитры. Влияние совместного произрастания на аккумуляцию цезия-137 в надземных органах люцерны и злаков определялось видовым составом травостоя: в люцерно-ежовой и люцерно-кострецовой травосмесях в обоих компонентах поступление цезия увеличивается (у люцерны на 30—78, у ежи на 15, у костреца на 16%) относительно их монокультур. В люцерно-тимо-феечком травостое никаких изменений не отмечено. Внесение азотных удобрений стимулировало поступление l37Cs в растения люцерны, ежи и костреца в монокультурах, где содержание изотопа возросло соответственно на 54, 36 и 16% по сравнению с без азотным фоном. В люцерно-кострецовой смеси показатели накопления цезия, наоборот, снизились: у люцерны на 71, у костреца на 21%. Тот же эффект наблюдался у ежи в смеси с люцерной — внесение минерального азота сократило миграцию 137Cs на 22% по сравнению с фосфорно-калийным фоном. Таким образом, наименее интенсивная миграция 137Cs и отсутствие стимулирующего влияния на нее азотных удобрений наблюдались у компонентов люцерно-тимофеечной смеси и в монокультуре тимофеевки. Существенное снижение (до 2—7 раз) аккумуляции Sr при внесении минерального азота в почву отмечено в монокультурах люцерны и костреца, а также у компонентов люцерно-кострецовой и люцерно-тимофеечной травосмесей. В люцерно-ежовой смеси азотные удобрения в 2,0—2,5 раза усилили поступление 90Sr в надземную массу как бобового компонента, так и злака. Как известно, уменьшение загрязнения продуктами радиоактивного деления продукции растениеводства с помощью внесения мелиорантов достигается через такие основные механизмы, как увеличение урожая и тем самым «разбавление» содержания радионуклидов на единицу веса урожая; повышение концентрации кальция и калия в почвенном растворе; закрепление микроколичеств радиоизотопов в почве путем внесения соответствующих соединений. И если полученные нами результаты по изменению степени аккумуляции 137Cs и 90Sr в сеяных травах под воздействием их совместного произрастания и внесения азотных удобрений можно рассматривать как проявление этих механизмов через физиолого-биохимические взаимодействия растений в агроценозах и их влияние на почвенную среду, то исследование миграции плутония в системе почва—растение предполагает разработку подходов, затрагивающих как почвенную химию, так и механизмы действия биотических и агрохимических факторов на его поступление в корни и аккумуляцию в надземных органах. Существует зависимость перехода плутония в раствор при снижении его сорбции почвенными частицами от интервала значений рН, механического состава и водно-воздушного режима почвы.
Сравнительный анализ содержания гамма-излучающих радионуклидов в почве и травах до вспашки (1988 г.) и после, вспашки дернины (1990 г.) позволяет судить об эффективности этого агротехнического приема в снижении миграции радиоизотопов в растения. Вспашка, заглубление верхнего (0—5 см) слоя почвы и последующая культивация при сохранении прежней технологии выращивания трав способствовали «разбавлению» концентрации радионуклидов в корнеобитаемом слое почвы. Суммарное содержание гамма-излучателей в почве снизилось в среднем в 1,8 раза за счет двухкратного уменьшения концентрации 137Cs и 134Cs, поскольку радиоизотопы цезия составляли более 65% суммарной концентрации. Вторым по значимости радионуклидом был 4аК, участие которого в общей гамма-активности почвы до вспашки составляло 23%, а после обработки — 32%, т.е. оно не только не изменилось, но даже увеличилось в результате внесения калийных удобрений перед повторным высевом трав, а затем поукосно. Таким образом, на дерново-подзолистых почвах сельхозугодий с плотностью загрязнения 2—5 Ки/км2 гамма-активность сеяных трав определяется в основном 40К, концентрация которого в почве сохраняется высокой за счет внесения фосфорных и калийных удобрений, содержание в фосфорных удобрениях составляет 70— 120 Б к/кг, а с внесением калийных удобрений в дозе 60 кг/га в почву поступает 1,35-10е Бк/кг калия-40. Эффект от перепахивания почвы для равномерного перемешивания радионуклидов в пахотном горизонте может проявляться в основном в злаках, поскольку поглощающая деятельность корневых систем бобовых трав осуществляется по всему профилю обработанного слоя. Анализ распределения радионуклидов цезия в корнях и надземных органах контрастных по свойствам видов (ежи сборной, костреца безостого и лисохвоста лугового) показал, что при внесении азотных удобрений в почву у ежи и костреца усиливается миграция радионуклидов цезия из корней в надземные органы: если на безазотном фоне соотношение удельной активности по цезию в корнях и надземной массе составляло у ежи 1:3, а у костреца 5:1, то на азотном фоне — соответственно 1: 20 и 1:1 (табл. 4.9). В то же время у лисохвоста лугового эти соотношения составляли на безазотном фоне 6: 1 и при внесении удобрений — 16: 1. Для более детального исследования особенностей перераспределения цезия между подземными и надземными органами был проведен вегетационный опыт с внесением в почву под луговые злаки стабильных изотопов цезия. Опыты были заложены в сосудах Митчерлиха на двух типах почвы: торфяно-болот-ной и дерново-глееватой суглинистой, т. е. нами были охвачены наиболее распространенные луговые почвы. Схема опыта: 7 видов луговых злаковых трав на безазотном фоне и на фоне внесения азота. Минеральные удобрения вносили в почву перед набивкой сосудов в виде солей: аммонийной селитры (на минеральной почве 1,71 г/сосуд, на торфяной—0,40 г/сосуд). Аккумуляция радиоцезия (Бк/кг) многолетними злаками Таким образом, радиоэкологический мониторинг в луговых фитоценозах, проведенный в 1986—1990 гг. на пробных площадях естественных лугов, в разной степени удаленных от ЧАЭС, и в агроэкосистемах на опытах с сеяными травами, позволяет сделать следующие выводы. 1. Поступление радионуклидов и аккумуляция их в луговой растительности в период наблюдений определялись рядом факторов, в том числе количеством и элементным составом после-аварийных радиоактивных выпадений и характером взаимодействия радионуклидов с почвой, что в значительной мере повлияло на их доступность растениям, поглощение и миграцию в надземные органы луговых трав. 2. В послеаварийный период удельная радиоактивность растений в луговых фитоценозах зоны загрязнения, представленных в основном злаковыми и разнотравно-злаковыми ассоциациями, после резкого снижения в 1986—1987 гг. за счет распада короткоживущих радионуклидов стабилизировалась на пробных площадях в Гомельской области на уровне 10~8—10~6 Ки/кг, в Могилевской— 10-9—10-8, в Минской — 10 -9—10-8 Ки/кг; 4. Для ряда доминантных луговых растений установлены как межвидовые, так и внутривидовые различия в аккумуляции радионуклидов. Внутривидовые различия наиболее контрастно проявляются при сопоставлении уровней накопления гамма-излучателей на торфяных и минеральных почвах. При близких показателях плотности загрязнения удельная гамма-активность надземной фитомассы ценопопуляций одних и тех же видов в среднем на порядок ниже на торфяниках по сравнению с дерново-подзолистыми почвами вследствие высокой сорбирующей способности торфяной почвы, что обеспечивается присутствием в ней значительного количества гумусовых и низкомолекулярных кислот. 5. Самые низкие коэффициенты накопления гамма-излучающих радионуклидов, до 70—90% которых составляют радиоизотопы цезия, отмечены у луговых доминантов на торфяно-глеевых почвах (0,4—1,5). Значительно интенсивнее накопление гамма-излучателей луговой растительностью происходит на минеральных почвах. 6. Коэффициенты накопления радионуклидов на одной и той же почвенной разности могут существенно (до 4—6 раз) различаться не только у представителей разных систематических групп, но и у видов в пределах одного семейства, например мятликовых. Поэтому неправомерно использование в сравнительной характеристике накопления радионуклидов луговой растительностью такой таксономической единицы, как семейство. В основе анализа аккумулирующей способности луговых трав в отношении отдельных дозообразующих радиоизотопов должны лежать исследования морфофизиологических особенностей каждого доминанта лугового сообщества с учетом ценотических отношений компонентов и водно-физических и агрохимических параметров эдафотопа, определяющих концентрацию обменных форм радионуклидов в почвенном растворе. [3]
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|