Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные сведения и возможности

 

В первую очередь видеоадаптер используется для отображения на дисплее интерфейса пользователя и прочей визуальной информации. Наверное верно будет сказать, что графический адаптер используется для обработки данных связанных с визуализацией, а не только для передачи картинки, обработанной ЦПУ, на монитор. На первых видеоадаптерах дело примерно так и обстояло, но с развитием операционных систем и появлением в них элементов графического интерфейса, а также ростом разрешающей способности дисплеев и количеством отображаемых цветов, нагрузка на процессор сильно возрастала. Решение этой проблемы явилось в том, что в видеоадаптерах стали устанавливать графические 2D ускорители, позволяющие часть вычислений по обработке графики перекладывать с процессора на видеоадаптер, который, ввиду своей архитектуры, был более адаптирован для обработки графики.

Дальнейшим развитием видеокарт стало интегрирование в него ускорителей трехмерной графики, для ускорения работы приложений ориентированных на обработку 3D графики, а так же трехмерных игр.

В настоящее время видеокарты верхнего ценового сегмента представляют собой очень сложную и мощную систему, имеющим на борту собственный графический процессор (по производительности в операциях с плавающей запятой, сильно превосходящие самые мощные процессоры), собственную память, BIOS, внутреннюю системную шину, и внешнюю шину взаимодействия с другими видеокартами (nVidia SLI и ATI Crossfire).


Дополнительные возможности

 

В видеокартах nVidia дополнительно реализована технология CUDA, позволяющая производить не только графические, но и вычисления общего назначения. Это достаточно новая технология, еще не успевшая получить достаточное большое распространение, но уже сейчас силами видеокарт обрабатываются вычисления связанные с симуляцией физических взаимодействий, а также существуют приложения для обработки видео потоков, производительность в которых во много раз превосходит оную на ЦП. Повторюсь, что технология ещё только начинает развиваться, поэтому круг решаемых задач ещё будет расширяться.

Такое высокое быстродействие стало возможным за счёт того, что в графических процессорах используется не одно, не два и даже не четыре вычислительных ядра, например в чипе nVidia GT200 (GeForce GTX 280), присутствует 240 вычислительных программируемых процессора. Но технология не лишена недостатков, для достижения максимального быстродействия задача должна быть очень сильно распараллелена на потоки, слабо зависящие друг от друга.

При недостаточном быстродействии возможно увеличение производительности за счёт использоваться в системе двух, трёх, или даже четырёх видеоадаптеров, объединяемых специальными шинами связи.

К основным характеристикам можно отнести объём памяти, ее тип, частоту, ширину шины памяти, частоту графического процессора, количество вычислительных ядер (так же называемых шейдерными процессорами). Но всё же наверное главной характеристикой будет не одна из вышеперечисленных, а реализация самого шейдерного домена (графического процессора GPU). Если взять два топовых решения от основных производителей GPU, то можно заметить, что в процессорах от ATI количество шейдерных процессоров больше почти в два раза, в них используется более быстрая память GDDR5, но всё же при всём этом GPU от nVidia будет иметь более высокое быстродействие. Всё это сильно затрудняет оценку производительности видео подсистемы ПК.


Жесткий диск

 

Жесткий диск, или винчестер, является постоянным запоминающим устройством, память которого энергонезависима, что позволяет хранить в нем данные очень продолжительное время без какой либо дополнительной подпитки.

Винчестеры используются для долгосрочного хранения данных. На них содержится операционная система, данные пользователя, файлы и т.д.

К основным характеристикам жестких дисков (Hard Disk Drive - HDD) можно отнести следующие: объём, скорость, среднее время поиска и отказоустойчивость.

Всё же для большинства простых пользователей основным показателем является объём винчестера, чем он больше - тем больше данных на него можно поместить.

Скорость. В большинстве случаев разница в скорости в современных винчестерах, при равных объёмах, не очень существенна, т.к во многом она определяется скоростью вращения шпинделя, для настольных систем этот показатель равен 7200 оборотов в минуту, для ноутбуков - чаще 5400.

Подключаются такие системы по шине SATA, пропускная способность которой равна 3 Гбита/с, реже через SCSI (в ноутбуках или серверах).

Существуют и более скоростные винчестеры для серверных платформ, скорость вращения шпинделя которых составляет 15000 об/мин, подключаются такие HDD через шину SAS (так же как и IDE, эволюционировавшая в SATA, так же и серверная параллельная шина SCSI была заменена на последовательную SAS). Объёмы таких винчестеров обычно значительно меньше, и если в домашней системе объёмом в 750Гбайт уже никого не удивишь, то в серверном сегменте такие жесткие диски очень дороги. Помимо быстродействия такие винчестеры отличаются повышенной надёжностью как магнитных пластин, так и всех остальных движущихся элементов, а также готовностью работы в режиме 24/7, те непрерывно в течении долгого времени.

Конкретно определить надёжность винчестера по каким-то показателям очень сложно, здесь скорее стоит отталкиваться от того, как зарекомендовал себя тот или иной бренд.

Среднее время поиска показывает то среднее время затрачиваемое головкой винчестера на переведение с дорожки с таблицей размещения файлов на дорожку с самим файлом. Этот фактор особенно выжжен при работе винчестера с большим количеством небольших файлов, или при сильной фрагментации содержимого раздела.

Шумность же весьма субъективный фактор, определяющий уровень комфорта пользователя находящегося рядом с системным блоком, но важность этого показателя каждый пользователь определяет по-разному.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...