Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Преобразование изображений в цифровой код

Для того чтобы ввести изображение в машину, нужно перевести его на машинный язык, т.е. закодировать, представить в виде некоторой комбинации символов, которыми может оперировать машина. Кодирование плоских фигур можно осуществить самым различным образом. Лучше стремиться к наиболее “ естественному” кодированию изображений. Будем рисовать фигуры на некотором поле, разбитом вертикальными и горизонтальными прямыми на одинаковые элементы – квадратики. Элементы, на которые упало изображение, будем сплошь зачернять, остальные – оставлять белыми. Условимся обозначать черные элементы единицей, белые – нулем. Введем последовательную нумерацию всех элементов поля, например, в каждой строке слева направо и по строкам сверху вниз. Тогда каждая фигура, нарисованная на таком поле, будет однозначно отображаться кодом, состоящим из стольких цифр (единиц и нулей), сколько элементов содержит поле. 

 

Рис 2.3 Примеры проецирования и кодирования изображений.

 Такое кодирование (рис. 2.3) считается “ естественным” потому, что разбиение изображения на элементы лежит в основе работы нашего зрительного аппарата. Действительно, сетчатка глаза состоит из большого числа отдельных чувствительных элементов (так называемых палочек и колбочек), связанных нервными волокнами со зрительными отделами головного мозга. Чувствительные элементы сетчатки передают по своим нервным волокнам в головной мозг сигналы, интенсивность которых зависит от освещенности данного элемента. Таким образом, изображение, спроектированное оптической системой глаза на сетчатку, разбивается палочками и колбочками на отдельные участки, и по элементам в некотором коде передается в мозг. Отдельные элементы поля называются рецепторами, а само поле – полем рецепторов.

Совокупность всех плоских фигур, которые можно изобразить на поле рецепторов, составляет некое множество. Каждая конкретная фигура из этой совокупности есть объект этого множества. Любому их таких объектов соответствует определенный код. Точно также любому коду соответствует определенное изображение на поле рецепторов. Взаимно однозначное соответствие между кодами и изображениями позволит оперировать только кодами, помня о том, что изображение всегда может быть воспроизведено по его коду. 

Емкость ИНС – число образов, предъявляемых на входы ИНС для распознавания. Для разделения множества входных образов, например, по двум классам достаточно всего одного выхода. При этом каждый логический уровень – "1" и "0" – будет обозначать отдельный класс. На двух выходах можно закодировать уже 4 класса и так далее. Для повышения достоверности классификации желательно ввести избыточность путем выделения каждому классу одного нейрона в выходном слое или, что еще лучше, нескольких, каждый из которых обучается определять принадлежность образа к классу со своей степенью достоверности, например: высокой, средней и низкой. Такие ИНС позволяют проводить классификацию входных образов, объединенных в нечеткие (размытые или пересекающиеся) множества. Это свойство приближает подобные ИНС к условиям реальной жизни.


3. Нейрокомпьютеры и сети

 

Нейрокомпьютеры

 

Нейрокомпьютеры - это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида - нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ. Как следствие этого введены специфические связи между элементами, которые являются предметом отдельного рассмотрения.

В отличие от классических методов решения задач нейрокомпьютеры реализуют алгоритмы решения задач, представленные в виде нейронных сетей. Это ограничение позволяет разрабатывать алгоритмы, потенциально более параллельные, чем любая другая их физическая реализация.

Нейрокомпьютер - это вычислительная система с архитектурой MSIMD, в которой реализованы два принципиальных технических решения: упрощен до уровня нейрона процессорный элемент однородной структуры и резко усложнены связи между элементами; программирование вычислительной структуры перенесено на изменение весовых связей между процессорными элементами.

Общее определение нейрокомпьютера может быть представлено в следующем виде. Нейрокомпьютер - это вычислительная система с архитектурой аппаратного и программного обеспечения, адекватной выполнению алгоритмов, представленных в нейросетевом логическом базисе.


Что такое нейронные сети?

 

Каждый нейрон получает сигналы от соседних нейронов по специальным нервным волокнам. Эти сигналы могут быть возбуждающими или тормозящими. Их сумма составляет электрический потенциал внутри тела нейрона. Когда потенциал превышает некоторый порог, нейрон переходит в возбужденное состояние и посылает сигнал по выходному нервному волокну. Отдельные искусственные нейроны соединяются друг с другом различными методами. Это позволяет создавать разнообразные нейронные сети с различной архитектурой, правилами обучения и возможностями.

Термин “искусственные нейронные сети” у многих ассоциируется с фантазиями об андроидах и бунте роботов, о машинах, заменяющих и имитирующих человека. Это впечатление усиливают многие разработчики нейросистем, рассуждая о том, как в недалеком будущем, роботы начнут осваивать различные виды деятельности, просто наблюдая за человеком. Если переключиться на уровень повседневной работы, то нейронные сети это всего-навсего сети, состоящие из связанных между собой простых элементов формальных нейронов. Большая часть работ по нейроинформатике посвящена переносу различных алгоритмов решения задач на такие сети.

В основу концепции положена идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Коротко эту мысль можно выразить так: “структура связей все, свойства элементов ничто”.

Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь). С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...