Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Техногенно-измененный радиационный фон

 

Техногенный радиационный фон формируется естественными радио­нуклидами, поступающими в окружающую среду в результате использова­ния в производстве при-родных материалов, содержащих радионуклиды. Это сжигание органического топлива, внесение минеральных удобрений, приме­нение светосоставов постоянного действия, использование авиации и т.д. Некоторые технологические процессы могут снижать воздействие природ­ного радиационного фона, например, очистка питьевой воды.

Вклад в облучение населения за счет техногенного радиационного фона вносят содержащиеся в стройматериалах радионуклиды.

В помещениях доза внешнего облучения изменяется в зависимости от соотношения двух конкурирующих факторов: экранирования внешнего из­лучения зда-нием и интенсивности излучения содержащихся в стройматериа­лах радионуклидов. При этом основное значение в формирование дозы вно­сят 40К, 226Ra, 232Th с продуктами распада, содержащимися в стройматериа­лах.

Сжигание органического топлива, в первую очередь, каменного угля является источником выбросов в окружающую среду ряда естественных радионуклидов, таких как 40К, 226Ra, 228Ra, 232Th, 210Po, 210Рb. Отечественные электростанции, работающие на угле с большой зольностью при степенях очистки 90-99% дают значительное количество выбросов этих радионукли­дов, формирующее эффективную эквиваленту дозу в 5-40 раз большую, чем атомные станции аналогичной мощности. Индивидуаль-ная эффективная эквивалентная доза в СССР в 80-х годах от этого источника облучения оце­нивалась около 2 мкЗв/год.

Уровни облучения от использования фосфорных удобрений формируются за счет содержащихся в них 238U, 232Тh, 210Ро, 210Pb, 226Ra, 40К и оце­ниваются эффективной эквивалентной дозой 136 нв/год.

Еще меньший вклад в формирование суммарной эффективной экви­валентной дозы вносят полеты на самолетах и применение содержащих ра­дионуклиды предметов широкого потребления.

 

ИСКУССТВЕННЫЕ РАДИОНУКЛИДЫ

 

Искусственные радионуклиды попадают в окружающую среду при испытаниях ядерного оружия и работе предприятий ядерного топливного цикла.

Взрывы ядерных устройств

С 1945 по 1980 г. в атмосфере было испытано 423 ядерных устройст­ва. При этом образовалось и было выброшено в окружающую среду огромное количество радионуклидов. Большая доля глобального радиоактивного за­грязнения окружающей среды обусловлена выпадениями из стратосферы. Средняя продолжительность тропосферных осадков составляет около 30 сут., а территория загрязнения от них – от нескольких сот до тысяч километ­ров.

Считается, что 1 Мт энергии деления соответствует 1,45х1026 делений. Поэтому общая активность Q, Бк, образующихся при взрыве мощностью 1 Мт радионуклидов рассчитывается по формуле:

Q = l,45 · 1026 · k · λ,

где:

k – коэффициент выхода нуклида при делении, %;

λ – 0,693/т- постоянная распада, 1/сек.

Научный комитет ООН по действию атомной радиации (НКДАР) вы­деляет 21 радионуклид, которые вносят тот или иной вклад в дозу облучения населения. Среди них особо опасными являются 8 радионуклидов. Это (в порядке уменьшения вклада в дозу) 14С, 137Cs, 95Zr, 106Ru, 90Sr, 144Ce, 3H, 131I.

При этом внутреннее облучение организма формируется за счет 14С, 90Sr, 106Ru, 131I, 137Cs, кроме того, выделяются 85Kr, 81Sr, плутоний и транс­плутониевые элементы, поступающие в организм человека с водой, продук­тами питания, воздухом.

Внешнее облучение формируется главным образом такими радионук­лидами, как 95Zr, 95Nb, 106Ru, 103Ru, 140Ba и 137Cs.

 

Работа предприятий ядерного топливного цикла

В ядерный топливный цикл входят предприятия по добыче урановой и ториевой руд, их переработке, получению топлива для атомных станций и оружейного урана и плутония, регенерации отработанного топлива.

В конце 1995 г. в 26 странах эксплуатировалось более 430 ядерных энергетичес-ких установок, а доля АЭС в производстве электроэнергии со­ставляет до 72% во Франции. Всего в мире на АЭС получают сейчас около 16% производимой в мире энергии. В России доля производимой АЭС элек­троэнергии составляет около 12%.

Выбросы естественных радионуклидов при добыче и переработке урановых и ториевых руд представлены в основном газообразным 222Rn из урановых шахт; твердыми отходами руды из хвостохранилищ, где основная активность формируется долгоживущим 232Тh с продуктами распада, и ура­новыми отходами с обогатительных фабрик, содержащих незначительное количество урана, тория и продуктов их распада.

Считается, что в урановый концентрат переходит 14% суммарной ак­тивности исходной руды, в которой содержится 90% урана.

Обогащение природного урана 235U и изготовление тепловыделяющих элементов сопровождается незначительными выбросами в окружающую среду. Твердые и жидкие отходы при этом изолируются.

Работа ядерного реактора сопровождается большим числом радио­нуклидов – продуктов деления и активации.

Количество и качественный состав радионуклидов, поступающих в окружающую среду, зависит от типа реактора и систем очистки воздуха и сточных вод. В окружаю-щую среду удаляются газообразные отходы после очистки, а также частично аэрозоль-ные и жидкие. Твердые отходы хранятся на площадке с последующим захоронением.

 

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

НА ОРГАНИЗМ

 

Все живые организмы на Земле являются объектами воздействия ио­низирующих излучений.

Воздействие ионизирующего излучения на живой организм называется облучением.

Различают внешнее облучение организма (тела) ионизирую­щим излучением, приходящее извне, и внутреннее облучение организма, его органов и тканей излуче-нием содержащихся в них радионукли­дов.

Облучение может быть хроническим, в течение длительного времени, и острым – однократным кратковременным облучением такой интенсивно­сти, при которой имеют место неблагоприятные последствия в состоянии организма.

По степени радиационной опасности с точки зрения потенциальной тяжести последствий внутреннего облучения радионуклиды разделены на группы радиацион-ной опасности. В порядке убывания радиационной опас­ности выделены 4 группы с индексами А, Б, В и Г.

Результатом облучения являются физико-химические и биологиче­ские изменения в организмах. Радиационный эффект является функцией физических характеристик Аi взаимодействия поля излучения с веществом:

η = F(Ai)

Величины Ai называются дозиметрическими. Основной из них явля­ется поглощенная доза D –  это средняя энергия, переданная излучением единице массы тела.

Единица поглощенной дозы – Грэй:

1 Гр = 1 Дж/кг

Повреждение тканей связано не только с количеством поглощенной энергии, но и с ее пространственным распределением, характеризуемым линейной плотностью ионизации, или, иначе, линейной передачей энергии (ЛПЭ). Чем выше ЛПЭ, тем больше степень биологического повреждения.

Для учета этого эффекта вводится понятие эквивалентной дозы Н, оп­ределяемой как произведением поглощенной дозы D на коэффициент каче­ства излучения К:

H = D · K

Коэффициент качества излучения К определяется как регламентиро­ванное значение относительной биологической эффективности (ОБЭ) излу­чения, характери-зующей степень опасности данного излучения по отноше­нию к образцовому рентгеновскому излучению с граничной энергией 200 кэВ.

Таким образом, коэффициент качества позволяет учесть степень опасности облучения людей независимо от вида излучения. При хрониче­ском облучении всего тела его значение составляет:  а) для рентгеновского и γ-излучения – 1;  б) для β-излучения – 1;  в) для протонов с энергией < 10 МэВ – 10;  г) для α-частиц с энергией < 10 МэВ – 20.

Единица измерения эквивалентной дозы – зиверт (Зв):

1 Зв = 1 Гр для излучений

В практике часто используется внесистемная единица эквивалентной дозы – бэр:

1 3в= 100 бэр

В реальных условиях облучение бывает неравномерным по телу и ор­ганам. Необходимость сравнения ущерба здоровью от облучения различных органов привела к введению понятия эффективной эквивалентной дозы, определяемой соотношением:

HE = ∑i Li · Hi,

где

Hi – среднее значение эквивалентной дозы в i-ом органе или ткани;

Li – взвешивающий коэффициент, равный отношению риска смерти в результате облучения i-гo органа или ткани к риску смерти от облучения всего тела при одинако-вых эквивалентных дозах.

Т.е. коэффициент Li позволяет пересчитать дозу облучения i-гo органа на эквива-лентную по риску смерти дозу облучения всего тела. Понятие эф­фективной эквива-лентной дозы позволяет, таким образом, сравнить различ­ные случаи облучения с точки зрения риска смерти человека, а также оце­нить суммарный риск при облучении раз-личных органов.

Сравнительная радиопоражаемость органов и тканей характеризуется понятием радиочувствительность. Очевидно, коэффициент U дол­жен быть выше для наиболее радиочувствительных органов. МКРЗ рекомен­дованы следующие показатели Li для различных органов:

Половые железы…………………………………….0,20

Красный костный мозг……………………………..0,12

Легкие……………………………………………….0,12

Щитовидная железа………………………………...0,05

Кость (поверхность)……………………...…………0,01

Остальные органы (ткани)…………………………0,05

Наиболее радиочувствительными являются клетки постоянно обнов­ляющихся тканей (костный мозг, половые железы и т.п.).

В результате облучения живой ткани, на 75% состоящей из воды, проходят первичные физико-химические процессы ионизации молекул воды с образованием высокоактивных радикалов типа Н+ и ОН и последующим окислением этими радика-лами молекул белка. Это косвенное воздействие излучений через продукты разложения воды. Прямое действие может сопро­вождаться расщеплением молекул белка, разрывом связей, отрывом радика­лов и т.п.

В дальнейшем под действием описанных первичных процессов в клетках происхо-дят функциональные изменения, следующие биологическим законам.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...