Методика изучения неравенств в старших классах
Содержание
Введение. 3 1. Методика изучения темы "Неравенства" в начальной школе. 5 2. Методика изучения неравенств в старших классах. 11 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики. 11 2.2 Классификация преобразований неравенств и их систем.. 13 2.3 Общая последовательность изучения материала линии неравенств. 15 3. Методика изучения основных классов неравенств и их систем.. 19 Заключение. 25 Список использованных источников. 27
Введение
Тема "Неравенства" занимает важное место в курсе алгебры. Она богата по содержанию, по способам и приемам решения неравенств, по возможностям ее применения при изучении ряда других тем школьного курса алгебры. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач. Анализ диссертационных работ, посвященных методике изучения темы "Неравенства" в основной школе, показал, что в настоящий момент имеется ряд исследований, раскрывающих ее различные аспекты. Одним из первых было диссертационное исследование К.И. Нешкова, в котором сформулированы принципы отбора содержания и выделен необходимый объем материала по теме. При этом большая роль отводилась упражнениям. Исследования: М.В. Паюл, И.М. Степуро посвящены вопросам взаимосвязи понятий неравенства, уравнения и функции; М.П. Комова, Г.Н. Солтан - доказательствам и решению неравенств на геометрическом материале; Е.Ф. Недошивкина - внутрипредметным связям при изучении уравнений и неравенств в курсе математики 4-8-х классов; Н.Б. Мельниковой, Д.Д. Рыбдаловой - прикладным аспектам изучения неравенств в средней школе.
Итак, можно констатировать тот факт, что отдельные вопросы методики обучения понятию неравенства и решению конкретных неравенств в школьном курсе математики освещены достаточно полно. Несмотря на значительный положительный опыт в методике преподавания темы "Неравенства", как показывает анализ результатов тестов, контрольных, выпускных, вступительных экзаменационных работ, учащиеся средней школы недостаточно полно владеют основными знаниями и умениями по решению неравенств. В качестве аргумента приведем анализ результатов участия России в международных исследованиях TIMSS (6-ое место из 36 стран участников), который показал, что наибольшую озабоченность по курсу алгебры вызывает качество знаний и умений учащихся по теме "Неравенства". 1. Методика изучения темы "Неравенства" в начальной школе.
Работа над неравенствами ведется с I класса, органически сочетаясь с изучением арифметического материала. Программа по математике для I-III классов ставит задачу выполнять сравнение чисел, а также сравнение выражений с целью установления отношений "больше", "меньше", "равно"; научить записывать результаты сравнения с помощью знаков Числовые неравенства учащиеся получают в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками Однако в процессе работы над уравнениями, выражениями и неравенствами с переменной учащиеся, подставляя различные значения переменной, накапливают наблюдения и убеждаются в том, что равенства и неравенства бывают как верные, так и неверные. Такой подход к раскрытию понятий определяет соответствующую методику работы над равенствами, неравенствами, уравнениями.
Ознакомление с неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий. Сравнение осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел (кружков 7, треугольников 5, кружков больше, чем треугольников, 7 больше, чем 5). В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9 меньше, чем 10, потому что при счете число 9 называют перед числом 10; 5 больше, чем 4, потому что при счете число 5 называют после числа 4. Установленные отношения записываются с помощью знаков Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел, начиная с высшего разряда (75>48, так как 7 десятков больше, чем 4 десятка; 75>73, так как десятков поровну, а единиц в первом числе больше, чем во втором). Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Сравнение величин вызывает трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически в I-III классах предлагать разнообразные упражнения, например: Подберите равную величину: 7 км 500 м = □ м, 3080 кг= □ т □ кг. Подберите числовые значения величин так, чтобы запись верной: □ ч<□ мин, □ см =□ дм □ см, □ т □ ц =□ кг;
3) Вставьте наименование у величин так, чтобы запись была верной: 16 мин>16... Подобные упражнения помогают детям усвоить не только понятия равных и неравных величин, но и отношения единиц измерения. Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 дети длительное время упражняются в сравнении выражения и числа (числа и выражения). Первые неравенства вида 3+1>3, 3-1<3 полезно получать из равенства (3=3), сопровождая преобразования соответствующими операциями над множествами. Например, на классном наборном полотне и на партах отложено 3 треугольника и 3 кружка и записано: 3=3. Учитель предлагает детям придвинуть к 3 треугольникам еще 1 треугольник и записать это (3+1 - запись под треугольниками). Число кружков не уменьшилось (3). Учащиеся сравнивают число треугольников и кружков и убеждаются, что треугольников больше, чем кружков (4>3), значит, можно записать: 3+1>3 (три плюс один больше, чем три). Аналогичная работа ведется над неравенством 3-1<3 (три минус один меньше, чем три). В дальнейшем выражение и число (число и выражение) учащиеся сравнивают, не прибегая к операциям над множествами; находят значение выражения и сравнивают его с заданным числом, что отражается в записях: 5+3>5 2<7-4 7=4+5 8>5 2<3 7=7 После знакомства с названиями выражений учащиеся читают равенства и неравенства так: сумма чисел 5 и 3 больше, чем число 5; число 2 меньше, чем разность чисел 7 и 4, и т.п. Опираясь на операции над множествами и сравнение множеств, учащиеся практически усваивают важнейшие свойства равенств и неравенств (если а>b, то b<а). Дети видят, что если кружков и треугольников поровну (рис.1), то можно сказать, что Кружков столько, сколько треугольников (3+2=5), а также треугольников столько, сколько кружков (5=3+2). Если же Предметов не поровну (рис.2), то одних - больше (3 + 1>3), а других меньше (3<3 + 1).
Рис.1 Рис.2 В дальнейшем при изучении действий в пределах 100, 1000 и 1000000, упражнения на сравнение выражения и числа даются на новом числовом материале и увеличивается количество чисел и знаков действий в выражениях.
Сравнивая неоднократно специально подобранные выражения и числа, например: 17+0 и 17, 19-0 и 19, 7-1 и 7, 0: 5 и 0, с+1 и с, с: 1 и с и т.п., учащиеся накапливают наблюдения об особых случаях действий, глубже осознают конкретный смысл действий. Упражнения на сравнение выражений и числа закрепляют умения читать выражения и способствуют выработке вычислительных навыков. Сравнить два выражения, значит, сравнить их значения. Сравнение выражений впервые включается уже в конце изучения сложения и вычитания в пределах 10, а затем при изучении действий во всех концентрах эти упражнения систематически предлагаются учащимся. Например, надо сравнить Суммы: 6+4 и 6+3. Ученик рассуждает так: первая сумма равна 10, вторая-9, 10 больше, чем 9, значит, сумма чисел 6 и 4 больше, чем сумма чисел 6 и 3. Это рассуждение отражается в записях:
При изучении действий в других концентрах упражнения на сравнение выражений усложняются: более сложными становятся выражения, учащимся предлагаются задания вставить в одно из выражений подходящее число так, чтобы получить верные равенства или неравенства; проверить, верные ли равенства (неравенства) даны, неверные исправить, изменив знак отношения или число в одном из выражений; составить из данных выражений верные равенства или верные неравенства. Сами выражения подбираются таким образом, чтобы, сравнивая выражения, учащиеся наблюдали свойства и зависимости между компонентами и результатами действий. Например, после того как установили с помощью вычислений, что сумма 60+40 больше суммы 60+30, учитель предлагает сравнивать соответствующие слагаемые этих сумм, и дети отмечают, что первые слагаемые в этих суммах одинаковые, а второе слагаемое в первой сумме больше, чем во второй. Много раз, подмечая эту зависимость, учащиеся приходят к обобщению и затем свои знания используют при сравнении выражений. Таким образом, при изучении всех концентров упражнения на сравнение чисел и выражений, с одной стороны, способствуют формированию понятий о равенствах я неравенствах, а с другой стороны, усвоению знаний о нумерация и арифметических действиях, а также выработке вычислительных навыков. Неравенства с переменной вида: х+3<7, 10-х>5, х-4>12, 72: х<36 вводятся во II классе. Заранее ведется соответствующая подготовительная работа: включаются упражнения, в которых переменная обозначается не буквой, а "окошечком" (квадратом), например: □ >0, 6+4> □, 7+ □ <10 и т.д. Учащимся предлагается подобрать такое число, чтобы получить верную запись. При выполнении таких упражнений учитель должен побуждать детей к подстановке различных чисел; например, в неравенстве □ >0 можно подставить число 1 (1>□), можно 2 (2>□), можно З (3>□) и т.д. После того как названо несколько чисел, полезно обобщить наблюдения (например, во втором неравенстве можно подставить любое число, которое меньше 10-от 0 до 9).
Рассматривая во II классе, например, неравенство х+3<10, учащиеся путем подбора находят, при каких значениях буквы х значение суммы х+3 меньше, чем 10. В каждом таком задании дается множество чисел - значений переменной. Ученики подставляют значения буквы в выражение, вычисляют значение выражения и сравнивают его с заданным числом. В результате такой работы выбирают значения переменной, при которых данное неравенство является верным. Термины "решить неравенство", "решение неравенства" не вводятся в начальных классах, поскольку во многих случаях ограничиваются подбором только нескольких значений переменной, при которых получается верное неравенство. Позднее в упражнениях с неравенствами значения переменной не даются, учащиеся сами подбирают их. Такие упражнения, как правило, выполняются под руководством учителя. Можно ознакомить детей с таким приемом подбора значений переменной в неравенстве. Пусть дано неравенство 7×k<70. Сначала устанавливают, при каком значении k данное произведение равно 70 (при k=10). Чтобы произведение было меньше, чем 70, следует множитель брать меньше, чем 10. Учащиеся выполняют подстановку чисел 9, 8 и т.д. до нуля, вычисляют и сравнивают полученные значения выражения с заданным (70) и называют ответ. Упражнения с неравенствами закрепляют вычислительные навыки, а также помогают усвоению арифметических знаний. Например, подставляя различные числовые значения компонентов, дети накапливают наблюдения об изменении результатов действий в зависимости от изменения одного из компонентов. Здесь уточняются знания детей о конкретном смысле каждого действия (так, подставляя значения вычитаемого, дети убеждаются в том, что вычитаемое не больше уменьшаемого и т.п.). Подбирая значения буквы в неравенствах и равенствах вида: 5+х=5, 5-х=5; 10×х=10, 10×х<10, учащиеся закрепляют знания особых случаев вычислений. Работая с неравенствами, учащиеся закрепляют представление о переменной и подготавливаются к решению неравенства в IV классе. В соответствии с программой в I-III классах рассматриваются уравнения первой степени с одним неизвестным вида:
Неизвестное число сначала находят подбором, а позднее на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. Методика изучения неравенств в старших классах
Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики. Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики. а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики. В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании. б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений и неравенств связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений и неравенств. в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий, - это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Например, числовые промежутки выделяются неравенствами или системами неравенств. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями Связь линии уравнений и неравенств с числовой линией двусторонняя. Приведенные примеры показывают влияние уравнений и неравенств на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств. Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей приложения методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т.д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|