Общие сведения по фигурам и модусам силлогизма.
В фигуре 1 средний термин является подлежащим в большей посылке, сказуемым — в меньшей. В фигуре 2 он является сказуемым в большей посылке, сказуемым же и в меньшей посылке. В фигуре 3 он является подлежащим и в большей и в меньшей посылке, и, наконец, в фигуре 4 он является сказуемым в большей посылке и подлежащим—в меньшей. Теперь мы возьмём 11 возможных сочетаний и предположим, что каждое сочетание изменяет положение среднего термина указанными четырьмя способами, тогда получится 44 сочетание. Рассмотрим, какие из них возможны. Чтобы показать, как производится такого рода исследование, возьмём для примера сочетание AEE, изобразим его по первой фигуре. А Все М суть Р. Е Ни одно S не есть М. E Ни одно S не есть Р. Если мы обратим внимание на термин Р, то окажется, что в большей посылке как сказуемое обще-утвердительного суждения он не распределён, между тем в заключении как сказуемое обще-отрицательного суждения он распределён. Это противоречит правилу 4, а следовательно, такое сочетание невозможно. Рассмотрим далее, какой вид может принять это сочетание по фигуре 2: A все M суть P E ни одно M не есть S E ни одно S не есть P Здесь нет нарушения правил силлогизма, а потому заключение правильно. Но если это заключение мы рассмотрим по фигуре 3, то заключение будет нарушать правило 4. Силлогизм примет такой вид: А Все М суть Р. Е Ни одно М не есть S. Е Ни одно S не есть Р. По фигуре 4 это сочетание будет правильно. Если мы указанным только что способом исследуем все 44 сочетания, то получим следующие 19 правильных видов силлогизма, или модусов, распределённых по фигурам: Фигура 1 Фигура 2 Фигура 3 Фигура 4 AAA EAE AAI AAI EAE AEE IAI AEE AII EIO AII IAI
EIO AOO EAO EAO OAO EIO EIO Первая фигура AAA - Barbara EAE - Celarent AII - Darii EAI - Ferio Ослабленные модусы: AAI - Barbari EAO - Celaront Вторая фигура EAE - Cesare AEE - Camestres EIO - Festino AOO - Baroco Ослабленные модусы: EAO - Cesaro AEO - Cameostro Третья фигура AAI - Darapti IAI - Disamis AII - Datisi EAO - Felapton OAO - Bocardo EIO - Ferison Четвертая фигура AAI - Bramantip AEE - Camenes IAI - Dimaris EAO - Fesapo EIO - Fresison Ослабленные модусы: AEO - Cameno
Характеристика фигур. Характеризуем в общих чертах все четыре фигуры силлогизма в отношении их познавательного значения. Фигура 1. В ней меньшая посылка утвердительная, а большая общая (sit minor, affirmans, пес major sit speciaiis). Эта фигура употребляется в тех случаях, когда нужно показать применение общих положений (аксиом, основоположений, законов природы, правовых норм и т. п.) к частным случаям; это есть фигура подчинения. Первая фигура по сравнению с другими фигурами силлогизма обладает еще и той важной особенностью, что ее модусы непосредственно, в чистом виде выражают аксиому силлогизма, которая служит основанием правильного выведения заключения из посылок. Если иметь в виду отношение трех терминов силлогизма (S, M, P), истолковав их как отношение соответствующих множеств (объемов понятий), то аксиома выражается предложением (лат.) - dictum de omni et nullo (буквально - сказанное обо всем и ни об одном). Фигура 2. Как видно вторая фигура дает только отрицательные заключения. Она используется всякий раз когда необходимо доказать, что некоторый частный случай не может быть подведен под данное общее положение, ибо исключается из множества предметов, которое мыслится в термине Р. В этой фигуре одна из посылок должна быть отрицательной и большая посылка должна быть общей (una negans esto, nec major sit speciaiis). Посредством этой фигуры отвергаются ложные дедукции, или ложные подчинения.Таким образом, по второй фигуре отвергаются ложные подчинения, и именно потому, что одна из посылок отрицательная. Юридические приговоры строятся по этой фигуре.
Фигура 3. Третья фигура применяется для опровержения общих утверждений. В фигуре 3 меньшая посылка должна быть утвердительной, а заключение должно быть частным (sit minor af firmans, conclusio sit specialis). Поэтому в фигуре 3 обыкновенно отвергается мнимая Общность утвердительных и отрицательных суждений или доказывается исключение из общего положения. Положим, нам нужно доказать, что утверждение «все металлы тверды» допускает исключение, что оно не всеобще. Тогда мы строим силлогизм по фигуре 3: E Ртуть не тверда. А Ртуть есть металл.________ О Некоторые металлы не тверды. Фигура 4 имеет искусственный характер и обыкновенно не употребляется. Сведение фигур силлогизм Мы видели, что существуют различные фигуры и модусы силлогизмов. Спрашивается, равноценны ли они? Всё ли равно, если мы будем умозаключать по фигуре 1, 2 или 3? Оказывается, нет, и именно предпочтение следует отдать модусам фигуры 1. Доказательства по этой фигуре имеют особенно очевидный характер. Для проверки истинности силлогистического вывода, выраженного при помощи какого-либо модуса той или иной фигуры, следует этот модус свести к какому-либо модусу фигуры 1, и именно потому, что очевидность заключения по фигуре 1 можно доказать, показав применимость аксиомы силлогизма к модусам фигуры 2. Буква s показывает, что суждение, обозначенное предшествующей ему гласной, должно подвергнуться чистому обращению (conversio simplex). Буква р показывает, что суждение, обозначенное предшествующей ему гласной, нужно обращать per accidens, или посредством ограничения. Буква m показывает, что посылки силлогизма нужно переместить, т. е. большую посылку нужно сделать меньшей в новом силлогизме, а меньшую большей (нужно произвести metathesis, или mutatio praemissarum). В, С, D, F, начальные согласные названий, показывают модусы фигуры 1, получающиеся от сведения. Так Cesare, Camestres и Camenes фигур 2 и 4 можно свести к Celarent фигуры 1; Darapti, Disamis фигуры 3 можно свести к Darii, Fresison — к Ferio.
Буква k показывает, что данный модус может быть доказан через посредство какого-либо модуса фигуры 1 при помощи особого приёма, который называется reductio per deductionem ad impossibile, или, короче, reductio ad impossibile. Этот приём сведения называется также reductio ad absurdum.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|