Метод сеток решения уравнений параболического типа
Реферат
В курсовой работе рассматривается метод сеток решения параболических уравнений. Теоретическая часть включает описание общих принципов метода, его применение к решению параболических уравнений, исследование разрешимости получаемой системы разностных уравнений. В практической части разрабатывается программа для численного решения поставленной задачи. В приложении представлен текст программы и результаты выполнения тестовых расчетов. Объем курсовой работы: 33 с. Иллюстраций: 5. Графиков: 1. Источников: 4. Ключевые слова: параболическое уравнение, уравнение теплопроводности, метод сеток, краевая задача, конечные разности.
Содержание Введение 1. Теоретическая часть 1.1 Метод сеток решения уравнений параболического типа 1.2 Метод прогонки решения разностной задачи для уравнений параболического типа 1.3 Оценка погрешности и сходимость метода сеток 1.4 Доказательство устойчивости разностной схемы 2. Реализация метода 2.1 Разработка программного модуля 2.2 Описание логики программного модуля 2.3 Пример работы программы Заключение Список источников Приложение
Введение
К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов. Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных. В общем случае такое уравнение записывается следующим образом:
Заметим, что численными методами приходится решать и нелинейные уравнения, но находить их решение много труднее, чем решение линейных уравнений. введем в рассмотрение величину
Теоретическая часть Метод сеток решения уравнений параболического типа
Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей. Пусть дано дифференциальное уравнение
Требуется найти функцию
Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки. Замена дифференциального уравнения разностным может быть осуществлена разными способами. Один из способов аппроксимации состоит в том, что производные, входящие в дифференциальное уравнение, заменяются линейными комбинациями значений функции Рассмотрим неоднородное уравнение теплопроводности, являющееся частным случаем уравнений параболического типа:
Будем искать решение этого уравнения в области
Заметим, что эту полуполосу всегда можно привести к полуполосе, когда
где Для решения задачи область
Узлы сетки, лежащие на прямых
Для производной
Можем получить три вида разностных уравнений:
Разностные уравнения (1.5) аппроксимируют уравнение (1.2) с погрешностью
В разностной схеме (1.5) задействованы 4 узла. Конфигурация схемы (1.5) имеет вид:
В схеме (1.6) также участвуют 4 узла, и эта схема имеет вид:
В схеме (1.7) участвуют 5 узлов, и эта схема имеет вид:
Первая и третья схемы – явные, вторая схема неявная. В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений. Для узлов начального (нулевого) слоя
Для граничных узлов, лежащих на прямых
Уравнения (1.9) аппроксимируют граничные условия (1.4) с погрешностью Присоединяя к системе разностных уравнений, записанных для внутренних узлов, начальные и граничные условия (1.8) и (1.9) для разностной задачи получим полные разностные схемы трех видов. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя Третья схема также весьма проста для проведения вычислений, но при ее использовании необходимо кроме значений решения в узлах слоя С точки зрения точечной аппроксимации третья схема самая точная.
Введем в рассмотрение параметр В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи. Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток. На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость. Первая из построенных выше разностных схем в случае первой краевой задачи будет устойчивой при Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность – надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|