Функционирование драйверов устройств
Драйвер устройства выполняет несколько функций: 1. Обработку абстрактных запросов чтения и записи независимого от устройств и расположенного над ними программного обеспечения. 2. Инициализацию устройства. 3. Управление энергопотреблением устройства и регистрацией событий. 4. Проверку входных параметров. Если они не удовлетворяют определенным критериям, драйвер возвращает ошибку. В противном случае драйвер преобразует абстрактные термины в конкретные. Например, дисковый драйвер может преобразовывать линейный номер блока в номера головки, дорожки и секторы. 5. Проверку использования устройства в данный момент. Если устройство занято, запрос может быть поставлен в очередь. Если устройство свободно, проверяется состояние устройства. Возможно, требуется включить устройство или запустить двигатель, прежде чем начнется перенос данных. Как только устройство готово, может начинаться собственно управление устройством. Управление устройством подразумевает выдачу ему серии команд. Именно в драйвере и определяется последовательность команд в зависимости оттого, что должно быть сделано. Определившись с командами, драйвер начинает записывать После того как драйвер передал все команды контроллеру, ситуация может развиваться по двум сценариям. Во многих случаях драйвер устройства должен ждать, пока контроллер не выполнит для него определенную работу, поэтому он блокируется до тех пор, пока прерывание от устройства его не разблокирует. В других случаях операция завершается без задержек и драйверу не нужно блокироваться. Например, для скроллинга экрана в символьном режиме нужно записать лишь несколько байтов в регистры контроллера. Вся операция занимает несколько наносекунд.
По завершении выполнения операции драйвер должен проверить, завершилась ли операция без ошибок. Если все в порядке, драйверу, возможно, придется передать данные (например, прочитанный блок) независимому от устройств программному обеспечению. Затем драйвер возвращает некоторую информацию вызывающей программе о завершении операции. Если в очереди находились другие запросы, один из них теперь может быть выбран и запущен, в противном случае драйвер блокируется в ожидании следующего запроса. Описанная модель является упрощенным приближением к реальности. На самом деле программа значительно сложнее, и причиной тому служит большое количество разнообразных факторов. В ОС с возможностью горячей установки устройства могут добавляться или удаляться во время работы системы. В результате в то время, когда драйвер занят чтениемскакого-либо устройства, система может проинформировать его, что пользователь внезапно удалил это устройство из системы. При этом не только текущая операция переноса должна быть прервана без повреждения структур данных ядра, но и все ожидающие обработки запросы к исчезнувшему устройству должны быть корректно удалены из системы. Неожиданное добавление нового устройства может заставить ядро манипулировать ресурсами (например, линиями запросов прерывания), отнимая их у одного драйвера и предоставляя другому. Драйверам не разрешается обращаться к системным вызовам, ни им часто бывает необходимо взаимодействовать с остальным ядром. Обычно разрешаются обращения к некоторым системным процедурам. Например, драйверы обращаются к системным процедурам для выделения им аппаратно фиксированных страниц
Главный вопрос операционной системы — как сделать так, чтобы все устройства ввода-вывода и драйверы выглядели примерно одинаково. Если диски, принтеры, клавиатуры и т. д. требуют различных интерфейсов, то при появлении нового устройства будет требоваться переделка операционной системы, что естественно очень неудобно. Этот вопрос связан с интерфейсом между драйверами устройств и Существует принципиально другой подход, при котором у всех драйверов один и тот же интерфейс. При этом значительно легче установить новый драйвер, при условии, что он соответствует стандартному интерфейсу. Это также означает, что программисты, пишущие драйверы, знают, чего от них ждут, то есть какие функции они должны реализовать и к каким функциям ядра они могут обращаться. На практике не все устройства являются абсолютно идентичными, но обычно имеется небольшое число типов устройств, достаточно похожих друг на друга. Например, даже у блочных и символьных устройств есть много общих функций. Другой аспект единообразного интерфейса состоит в именовании устройств ввода-вывода. Независимое от устройств программное обеспечение занимается отображением символьных имен устройств на соответствующие драйверы. Например, в системе UNIX имя устройства однозначно указывает на специальный файл, содержащий номер главного устройства, использующийся для определения расположения подходящего драйвера. Этот файл также содержит номер второстепенного устройства, передаваемый в виде параметра драйверу для указания конкретного диска или раздела диска, к которому относится операция чтения или записи. Все устройства в системе UNIX имеют главный и второстепенный номера, по которым они однозначно идентифицируются. Выбор всех драйверов осуществляется по главному номеру устройства.
С именованием устройств тесно связан вопрос защиты. Как ОС предотвращает доступ пользователей к устройствам, на который у них нет прав? В UNIX и в Windows 2000 устройства представляются в файловой системе в виде именованных объектов, что дает возможность применять обычные правила защиты файлов к устройствам ввода-вывода. Системныйадминистратор может установить нужные разрешения для каждого устройства. Файловые системы Всем компьютерным приложениям нужно хранить и получать информацию. Наиболее удобной для доступа к долговременным устройствам хранения информации оказалась система, при которой пользователь назначает для той или иной совокупности данных некоторое имя. Определенный участок диска, занятый информацией, имеющей собственное имя, называется файлом. Часть ОС, работающая с файлами и обеспечивающая хранение данных на дисках и доступ к ним, называется файловойсистемой (ФС). С точки зрения пользователя наиболее важным аспектом файловой системы является ее внешнее представление, то есть именование и защита файлов, операции с файлами и т.д. Компьютеру безразлично, какое имя имеет любая программа или документ, так как он получает от ОС инструкцию подобно такой: " прочитай столько-то байт с такого-то места на диске ". С другой стороны пользователь не обязан знать, в каком физическом порядке и где именно находятся его данные. Ему достаточно потребовать от ОС прочитать документ или загрузить необходимую программу. Одной из важнейших характеристик ОС, помимо управления памятью, ресурсами компьютера и задачами, является поддержка файловой системы – основного хранилища системной и пользовательской информации. Файлы относятся к абстрактному механизму. Они предоставляют способ сохранить информацию на диске и считывать ее снова по мере необходимости. При этом от пользователя должны скрываться такие подробности, как способ и место хранения информации, детали ра6оты дисков. Важной характеристикой любого механизма абстракции являются принципы именования управляемых объектов, поэтому вкратце рассмотрим правила именования файлов.
Точные правила именования файлов варьируются от системы к системе, но все современные операционные системы поддерживают использование в качестве имен файлов 8-символьные текстовые строки. Так, книга, страница, карандаш являются допустимыми именами файлов. Часто в именах файлов также разрешается использование цифр и специальных символов, поэтому могут применяться и такие имена файлов, как 2 (лучше _2), срочный! и Рис.2-14. Многие файловые системы поддерживают имена файлов длиной до 255 символов. В некоторых ФС различаются прописные и строчные символы, в других, таких как MS-DOS, нет. Операционные системы Windows 95 и Windows 98 используют файловую систему MS-DOS и наследуют многие ее свойства, включая именование файлов. Операционные системы Windows NT и Windows 2000 также поддерживают файловую систему MS-DOS и наследуют ее свойства. Однако у них имеется своя файловая система NTFS, обладающая отличными свойствами. Во многих ОС имя файла может состоять из двух частей, разделенных точкой, например progr.exe. часть имени файла после точки называется расширением файла и обычно означает тип файла. Так, в MS-DOS имя файла может содержать от 1 до 8 символов плюс через точку расширение от 0 до 3 символов. В некоторых ОС, например в UNIX, расширения файлов являются просто соглашениями, и ОС не заставляет пользователя их строго придерживаться. Так, файл file.txt может быть текстовым файлом, но это скорее памятка пользователю, а не руководство к действию для операционной системы. Система Windows, напротив, знает о расширениях файлов и назначает каждому расширению определенное значение. Пользователи или процессы могут регистрировать расширения в ОС, указывая программу, создающее данное расширение. При двойном щелчке мышью на имени файла запускается программа, назначенная этому расширению, с именем файла в качестве параметра. Например, двойной щелчок мышью на имени file.doc запускает MS Word, который открывает файл file.doc. Обычно пользователям бывает необходимо логически группировать свои файлы, поэтому требуется некий гибкий способ, позволяющий объединять файлы в группы. Следовательно, нужна некая общая иерархия, то есть дерево каталогов. При таком подходе каждый пользователь может сам создать себе столько каталогов и подкаталогов, сколько ему нужно, группируя свои файлы естественным образом. В корневом каталоге могут быть также созданы каталоги и подкаталоги, принадлежащие различным пользователям. Возможность создавать произвольное количество подкаталогов является мощным структурирующим инструментом, позволяющим пользователям организовать свою работу. По этой причине почти все современные файловые системы организованы подобным образом.
При организации ФС в виде дерева каталогов требуется некоторый способ указания файла. Для этого обычно используются два различных метода. В первом случае каждому файлу дается абсолютное имя пути, состоящее из имен всех каталогов от корневого до того, в котором содержится файл, и имени самого файла. Например, путь \user\abc\myfile.doc означает, что корневой каталог содержит каталог user, который, в свою очередь, содержит подкаталог abc, где находится файл myfile.doc. Абсолютные имена путей всегда начинаются от корневого каталога и являются уникальными. Если первым символом имени пути является разделитель, это означает, что путь абсолютный. Применяется и относительное имя пути. Оноиспользуется вместе с понятием текущего каталога. Пользователь может назначить один из каталогов текущим рабочим каталогом. В этом случае все имена путей, не начинающиеся с символа разделителя, считаются относительными и отсчитываются относительно текущего каталога. Например, если текущим каталогом является \user\abc, тогда к файлу с абсолютным путем \user\abc\myfile.doc можно обратиться просто как к myfile.doc. Итак, любая файловая система предназначена для хранения информации о физическом размещении частей файла. В ФС существует минимальная единица информации – кластер, размер которого является нижним пределом размера записываемой на носитель информации в рамках ФС. Не следует путать понятие кластера с понятием сектора, который является минимальной единицей информации со стороны аппаратного обеспечения. От ФС требуется четкое выполнение следующих действий: Ø определение физического расположения частей файла, Ø определение наличия свободного места и выделение его для вновь создаваемых файлов. Скорость выполнения этих операций напрямую зависит от самой ФС. Разные файловые системы используют различные механизмы для реализации указанных задач и имеют свои преимущества и недостатки. ФС типа FAT представляют собой образ носителя в миниатюре, где детализация ведется до кластерного уровня. Поэтому операция поиска физических координат файла при его большой фрагментации будет затруднительна. ФС FAT16 занимает объем 128 Кб. И это позволяет легко кэшировать ее информацию. Для FAT32 эта величина для больших дисков составит »1Мб, что существенно затрудняет поиск физических координат фрагментированного файла. Еще хуже обстоит дело с поиском свободного места для больших файлов. Приходится просматривать практически всю таблицу. Быстродействие падает. NTFS использует более компактную форму записи,чтоускоряет поиск файла. Операции с выделением места проходят быстрее. Ключевое преимущество NTFS – возможность ограничения доступа к файлам и папкам. Важный параметр – размер кластера. Больший размер кластера гарантирует более высокую производительность за счет уменьшения самой ФС. Для NTFS увеличение кластера – болезненная процедура из-за невозможности выполнить дефрагментацию, поскольку большинство таких программ не работает с кластерами, отличными от штатных 4 Кб.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|