Снижение шума на пути его распространения
Стр 1 из 2Следующая ⇒ Классификация опасных и вредных поизводственных факторов В связи с многообразием неблагоприятных производственных факторов, а также в целях обеспечения системности и четкости профилактической работы по охране труда, возникла необходимость в классификации ОВПФ. По природе действия все ОВПФ подразделяются на четыре группы: физические, химические, биологические и психофизиологические. К группе физических ОВПФ относятся: движущиеся машины и механизмы, подвижные части производственного оборудования, перемещающиеся изделия, заготовки, материалы; разрушающиеся конструкции; повышенная запыленность и загазованность воздуха рабочей зоны; повышенная или пониженная температура поверхностей оборудования материалов; повышенная или пониженная температура, влажность, подвижность воздуха рабочей зоны; повышенный уровень шума, вибрации, инфразвука, ультразвуковых колебаний, ионизирующие излучения, статическое электричество, ультрафиолетовая или инфракрасная радиация; повышенное или пониженное барометрическое давление в рабочей зоне и его резкое измерение; повышенная или пониженная ионизация воздуха; повышенное напряжение в электрической цепи, замыкание которой может произойти через тело человека; повышенная напряженность электрического или магнитного полей; отсутствие или недостаток естественного света; недостаточная освещенность рабочей зоны; повышенная яркость света; острые кромки, заусеницы, шероховатость на поверхности заготовок, инструмента, оборудования; расположение рабочих мест на значительной высоте относительно поверхности земли (пола). Химические ОВПФ по характеру воздействия на организм человека делятся на: токсические, раздражающие, канцерогенные, мутагенные и влияющие на репродуктивные функции. Химические вещества проникают в организм человека через органы дыхания, желудочно-кишечный тракт, кожные покровы и слизистые оболочки.
По степени воздействия на организм все вредные вещества подразделяются на четыре класса опасности: I – чрезвычайно опасные (ртуть, свинец и др.) II – высокоопасные (кислоты, щелочи и др.) III- умеренно опасные (камфара, чай и др.) IY – малоопасные (аммиак, ацетон, бензин и др.). Биологические ОВПФ включают следующие биологические объекты: патогенные микроорганизмы – бактерии, вирусы, спирохеты, грибы, простейшие и продукты их жизнедеятельности. Психологические ОВПФ по характеру воздействия подразделяются на физические (статические и динамические) и нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов, монотонность труда, эмоциональные перегрузки). Все ВПФ можно подразделить на обусловленные неблагоприятными изменениями внешней производственной среды и особенностями технологических процессов, эксплуатацией судового оборудования и обрабатываемых материалов, эксплуатацией судового оборудования и обрабатываемых материалов, а также связывается с неправильной организацией трудовых процессов. Результат воздействия различных ОВПФ на организм человека в основном зависят от природы фактора, его количественной характеристики (концентрации, уровня, интенсивности) и от места воздействия факторов на организм. Шум. На предприятиях рыбного хозяйства некоторые цехи отличаются повышенной шумностью. К таким цехам можно отнести жестяно-баночные, консервные, деревообрабатывающие, механомонтажные, механические. Повышенный шум создают многие виды оборудования, применяемого в рыбоконсервном производстве, судоремонте, при изготовлении сетей и орудий лова.
Основные направления борьбы с шумом на предприятиях рыбной промышленности следующие: снижение шума в источнике его возникновения, то есть разработка шумобезопасной техники; снижение шума на пути его распространения, то есть применение средств коллективной защиты от шума – звукоизоляции, звукопоглощения, виброизоляции, демпфирования, глушителей шума; проведение организационно-технических мероприятий по защите от шума. Снижение шума в источнике его возникновения Осуществляется различными способами. Например, в зубчатых передачах большое значение для снижения шума имеет выбор характера зацепления, повышения точности изготовления колес и шестерен. Замена прямозубых шестерен шевронными снижает шум на 5 дБ. Для снижения механических шумов используют также замену подшипников качения на подшипники скольжения, что уменьшает шум на 10 –15 дБ; используют перемещение соприкасающихся металлических деталей с деталями из пластмасс и других «незвучных» материалов, замену возвратно-поступательного движения деталей на равномерно-вращательное, зубчатых и цепных передач на клиноременные и зубчато ременные (снижение шума на 10-15 дБ), принудительную смазку, улучшение балансировки вращающихся деталей, прокладочные материалы и упругие вставки в соединениях, в местах надевания деталей, замену ударных процессов и механизмов безударными. Для борьбы с аэродинамическими шумами, которые являются главной составляющей шума вентиляторов, кондиционеров, компрессорных турбин, двигателей внутреннего сгорания, применяются в основном звукоизоляция источника и установка специального глушителя. Снижение шума на пути его распространения Наиболее эффективное средство для снижения шума на пути его распространения – звукоизолирующие преграды (стены, звукоизолирующие оболочки вокруг машин, экраны, звукоизолирующие кабины и посты управления, т.е. звукоизолирующие оболочки вокруг рабочих мест). О звукоизолирующей способности преград судят по величине: , где τ – коэффициент звукопроницаемости – отношение звуковой мощности, прошедшей через преграду, к падающей на не звуковой мощности.
Величина R – (в дБ) по существу равна снижению уровня шума при прохождении его через преграду. Для оценки R – используется ряд формул. На основании закона масс для диапазона частот 100 – 3200 Гц получено: , где: m – поверхностная масса 1 м2 преграды, кг/м2; f – частота звуковых колебаний, Гц; pо cо – акустическое сопротивление воздуха, Па·c/м3. Для расчета средней звукоизоляции используется формула: Если преграды изготавливаются из стали, дюралюминия или фанеры, то для расчета средней звукоизоляции можно использовать формулу: , где ρ – плотность материала преграды, кг/м3; S – толщина преграды, м. При решении задач охраны труда возникает необходимость определения требуемой величины звукоизоляции с целью доведения условий труда до нормативного уровня. Основной шумовой характеристикой машин являются уровни звуковой мощности Lр, а на рабочих местах нормируют уровни звука или октавные уровни звукового давления L, поэтому величину L выражают через Lр: , где 3σmax – максимальное среднеквадратическое отклонение величины Lр; ∆L – величина, связывающая уровень звуковой мощности с уровнем шума в расчетной точке. Отклонение σmax = 4 при ориентировочном методе определения шумовых характеристик машин, σmax = 5 в октавной полосе со средней частотой 12,5 Гц. Величина в первом приближении определяется по формуле: , где Q –постоянная помещения, учитывающая звукопоглотительные свойства помещения, в котором находится источник шума, м2; S – площадь воображаемой или реальной замкнутой поверхности вокруг источника шума, проходящей через расчетную точку, м2. Если источник шума закреплен на полу в центре помещения, то , где r – расстояние от геометрического центра источника шума до расчетной точки. Постоянная помещения Q рассчитывается по формуле: , где α – средний коэффициент звукопоглощения ограждающей поверхности помещения общей площадью Sп для поверхностей из кирпича, бетона. Коэффициент α = 0,01 – 0,05, т.е. очень мал. Звукоизолирующая стенка Снижение шума может быть достигнуто путем установления звукоизолирующей стенки:
1 – стена или потолок; 2 – воздушный промежуток; 3 – крепления облицовки; 4 – перфорированное покрытие; 5 – звукоизоляционный материал; 6 –защитная пленка (оболочка). Требуемую звукоизоляцию стенки находят по формуле: , где Q1 и Q2 – постоянные помещений, в которых соответственно находится источник шума и рабочее место. В тех случаях, когда требуемая степень снижения шума невелика, могут применяться звукопоглощение – облицовка всех (или части) внутренней поверхности помещения звукопоглощающим материалом, или развешивание в помещении штучных (или объемных) звукопоглотителей. В качестве звукопоглотительных материалов применяются пористые волокнистые маты или плиты толщиной 50-100 мм, покрытые защитным слоем. Из выпускаемых промышленностью звукопоглощающих материалов наиболее широкое применение находят плиты «Силакпор» (α = 0,23-0,71), теплозвукоизоляционные маты марок АТМ –10 с, ТМ – 10, АТМ – 1, полиуретановый поропласт марки ППУ – ЭТ, акустические гипсовые плиты марки АГП (α = 0,16-0,34), акустические минеральные плиты марки ПА (α = 0,05-0,83). Для защиты от пыли и гидроизоляции звукопоглощающих материалов применяются защитные пленки, а для придания механической прочности красивого внешнего вида – перфорированные тонкие металлические или неметаллические листы. Уменьшение шума за счет звукопоглощения (в зоне отражения звука) ориентировочно оценивается по формуле: , где - эквивалентная площадь звукопоглощения а помещении до применения специальных средств звукопоглощения (облицовка, штучные поглотители), м2; ∆A – добавочная эквивалентная площадь звукопоглощения, образуемая облицовкой и штучными поглотителями, м2. Она определяется по формуле: , где α обл - коэффициент звукопоглощения облицовки; S обл – площадь облицовки, м2; Ашт – эквивалентная площадь звукопоглощения одного штучного поглотителя, м2; и- число штучных поглотителей. Выбирая величину S обл и и, обеспечивающие требуемое снижение шума. Однако общее возможное уменьшение шума за счет средств звукопоглощения не превышает 6 - 8 дБ. Для достижения максимального эффекта площадь звукопоглощающей облицовки должна составлять не менее 60% от площади Sn, ограждающих помещение поверхностей. Организационно-технические мероприятия по защите от шума включает применение малошумных процессов и оборудования, внедрение дистанционного управления шумных машин, рациональный режим труда и отдыха, применение средств индивидуальной защиты, периодический контроль уровня шума.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|