Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

2.4. Аномалии системы «Земля-Луна».




 

 

Ну, конечно, и Луна ещё порхает по траектории, которая сведёт с ума самого закалённого сторонника всемирного тяготения. Очень мало кто из них знает о том, как движется Луна. Отшучиваются: вопрос, мол, узкоспециальный, да теория движения Луны, мол, достаточно сложна… Да нет, всё проще: правда про движение Луны такова, что шутникам, если они не собираются валять дурака дальше, останется либо свихнуться, либо признать, что эта правда ну никак не вписывается в шаблоны всемирного тяготения.

А уж как стараются создать видимость того, что она в эти шаблоны отлично вписана! Многочисленные справочники и даже специализированные учебники внушают нам, что Луна движется вокруг Земли по простенькому эллипсочку с такими-то максимальным и минимальным удалениями. Сопоставишь цифры из разных источников – и диву дашься: они разнятся на тысячи километров. И это при том, что нас заверяют насчёт сантиметрового уровня точности измерения расстояния до Луны! Как такое получается? Да легко.

Правда в том, что параметры орбиты Луны не остаются постоянными: максимальное и минимальное удаления периодически изменяются. Казалось бы, ну и что тут такого? С чего об этом помалкивать? О, причина для этого очень даже есть! Согласно закону всемирного тяготения орбита невозмущённого движения спутника планеты является кеплеровой, в частности, тем самым простеньким эллипсочком. А возмущения из-за действия третьего тела, в данном случае, Солнца, приводят, якобы, к эволюции параметров орбиты. Но! Они должны эволюционировать согласованно. Так, изменению большой полуоси должно соответствовать изменение периода обращения в согласии с третьим законом Кеплера.

Так вот, движение Луны является исключением из этого правила. Большая полуось её орбиты изменяется с периодом в 7 синодических месяцев на 5500 км. Размах соответствующего изменения периода обращения согласно третьему закону Кеплера должен составлять 14 часов. В действительности же изменение длительности синодического месяца составляет всего 5 часов, причём периодичность этого изменения составляет не 7 синодических месяцев, а 14! То есть в случае орбиты Луны большая полуось и период обращения эволюционируют «в полном отвязе» друг от друга – как по амплитудам, так и по периодичности!

 

Если такое издевательское поведение никоим образом не следует из закона всемирного тяготения, то как же можно было строить теорию движения Луны на основе этого закона? Да никак. А как же строилась теория движения Луны? Да тоже никак. Никакой «теории движения Луны» не существует. Словосочетание такое имеется, но оно означает сводку проверенных практических рекомендаций для предвычисления положений Луны. И ничего, кроме этого. Опять всё тот же чисто описательный подход, основанный на ползучем эмпиризме… Так ведь, дорогие потребители, чего вам ещё надо от теории движения Луны, кроме возможности предвычислять её положения? Они же, несмотря ни на что, вычисляются правильно. Ну так и вычисляйте, и при этом радуйтесь жизни! Правда, радость жизни несколько улетучивается, когда выясняется объём вычислений, который требуется провернуть. Понимаете, когда теория хотя бы в общих чертах адекватна физическим реалиям, то уже первое приближение этой теории даёт вполне сносный результат. Второе приближение ещё больше придвигает его к реальности, третье – ещё, и так далее. Весьма небольшого числа приближений оказывается достаточно для того, чтобы дальнейшие приближения стали ненужными: рассчитанное и фактическое значения уже совпадают с требуемой точностью. Математики в таких случаях говорят: «ряд быстро сходится». Так вот, при расчётах координат Луны, ряды сходятся, как бы это помягче выразиться, очень медленно. В современных «теориях» количество членов этих рядов исчисляется тысячами. Почувствуйте разницу, дорогие потребители!

 

Почувствовали? Но это ещё не всё! Всех нас учили, что согласно закону всемирного тяготения Земля и Луна обращаются в противофазе около их общего центра масс. Вообще-то, в вышеупомянутых «теориях» координаты Луны рассчитываются в системе отсчёта, связанной не с этим центром масс, а с центром Земли, как будто Земля около центра масс не обращается. Для описательного подхода так, конечно, практичнее. Но, мол, не следует забывать, что на самом-то деле по орбите вокруг Солнца «едет» не центр Земли, но центр масс Земли-Луны, а Земля выписывает около него кривую, подобную траектории движения Луны вокруг Земли, только с гораздо меньшим средним радиусом – около 4670 км. Мол, всё по закону, не извольте беспокоиться.

Простите, где ж это всё по закону? Если бы здесь всё было по закону, то не было бы проблемы с несогласованной эволюцией параметров орбиты Луны. Или, по-вашему, всемирный закон действует всё-таки избирательно: вот здесь, пожалуйста, смотрите, а вот здесь не смотрите? Давайте же аккуратненько разберёмся с движением Земли в паре Земля-Луна. Спрашивается: где доказательства того, что Земля действительно обращается около центра масс этой пары? Ну, как же, скажут нам, массу-то Луны определили как раз по величине динамической реакции Земли на Луну, т. е. по величине радиуса обращения Земли около центра масс. Но как именно был определён этот радиус обращения? А вот, мол, как: направление с Земли на Солнце изменяется не только из-за годичного движения Земли. Ещё Солнце периодически сдвигается вдоль линии восток-запад. Это оттого, что Земля движется вокруг Солнца неравномерно: то несколько быстрее, то несколько медленнее среднего. И происходит это с периодом в синодический месяц. Вот, мол, и доказательство обращения Земли около центра масс!

Нет, любезные, это не доказательство. Ясно лишь, что на ровное орбитальное движение Земли наложена болтанка, с периодом в синодический месяц, вдоль местного участка орбиты. Но при обращении Земли около центра масс была бы болтанка ещё и поперёк орбиты. Не хотим показаться назойливыми, но где же свидетельства об этой поперечной болтанке? Три таких свидетельства наберётся? – Нет, отвечают нам, многовато просите! – Ну, два-то наскребёте? – Нет-нет, это тоже слишком. – Ну, хоть одно, хоть самое захудалое? – Нет, нет, и нет!.. Да что же это делается?! Как будто мы просим о чём-то таком, что находится за пределами технических возможностей! Всё оно в пределах: синодическая болтанка Земли поперёк орбиты отлично могла быть засвидетельствована уже несколькими способами. Но разные группы исследователей, не сговариваясь, заладили – нет, нет, и нет! Отговорки-то у всех разные, а конечный результат один и тот же!

Вот, полюбуйтесь! Классический и самый прямой способ убедиться в наличии синодической болтанки Земли «к Солнцу – от Солнца» – это обнаружить соответствующее изменение углового диаметра диска Солнца: его увеличение в полнолуние и уменьшение в новолуние. Правда, величина эффекта маловата: всего шесть сотых угловой секунды и отследить его весьма и весьма сложно. А жаль, очень кстати бы пришлось. Ну да не беда: есть ведь и другие способы! Вот, например, исследование спектральных линий Солнца. Если бы Земля болталась «к Солнцу – от Солнца» с амплитудной скоростью 12. 3 м/с, то из-за эффекта Допплера спектральные линии Солнца периодически сдвигались бы туда-сюда. Но чегой-то никто не выступает с радостными заявлениями на этот счёт. И не потому, что спектры Солнца недостаточно хорошо изучены: они изучены вдоль и поперёк. Может, исследователи скромничают? Да некогда им скромничать – они сейчас бурно развивают новое направление: открывание, понимаете ли, экзопланет. Так они называют планеты у далёких звёзд, которые обнаруживают себя единственно через периодические сдвиги спектров своих звёзд – якобы, из-за всё того же эффекта Допплера при обращении звезды около общего с планетой центра масс. Сбацали спектрографы, дающие уму непостижимую точность: в пересчёте на скорость получается всего 1 метр в секунду! Взять бы это чудо техники да с солнечными спектрами поработать: синодическая болтанка Земли поперёк орбиты стоит того! Но нет, допплеровский метод – он капризный какой-то получается. Лишь в случае далёких, неизученных звёзд всё выходит изумительно: сенсация на сенсации едет и сенсацией погоняет. А в случае Солнца, когда все важные параметры достоверно известны, что-то там фатально заклинивает…

Идём дальше, и видим ещё один распрекрасный метод: приём импульсов пульсаров. Здесь синодическая болтанка Земли «к Солнцу – от Солнца» проявилась бы во всей своей красе: накапливающиеся за полмесяца запаздывания-опережения моментов прихода импульсов от подходящих пульсаров достигали бы аж три сотых секунды! Чтобы это легко увидеть, нужно было бы всего лишь определять моменты прихода импульсов в системе отсчёта, связанной с центром Земли. Вместо этого, как нарочно, в хронометрировании пульсаров принято пересчитывать моменты прихода импульсов к центру масс Солнечной системы. При этом информация о движении Земли в паре Земля-Луна теряется полностью. Ну, знаете, это уже симптом! Непременно должны быть какие-то «высшие соображения», руководствуясь которыми, исследователи, не поморщившись, выбрасывают целый пласт информации! Что за страшную тайну скрывает этот пласт? Не ту ли, что синодическая болтанка Земли «к Солнцу – от Солнца» не существует?

 

Так или иначе, но эта болтанка упорно не обнаруживается прямыми методами. Поэтому, с горя прибегают к методам кривым. По-простому это называется «через задницу», а по-научному – «оптимизация многих параметров». Мало кто знает, в чём прелесть этого метода. Вон, бывает, что в потоке опытных данных имеются кое-какие особенности, которые из теоретических соображений являются лишними. Тогда проблема легко решается: известен целый набор математических процедур – фильтрация, сглаживание, и др., которые позволяют удалить из потока данных все лишние глупости. Это дело не хитрое: удалять-то. А что бедным учёным делать в противоположной ситуации: когда в потоке данных упорно отсутствует некоторая особенность, а очень хочется, чтобы она присутствовала? Вот для таких случаев и был разработан метод оптимизации многих параметров. Он тем и хорош, что позволяет вполне наукообразно засвидетельствовать наличие несуществующих эффектов. Для этого записываются сложные, аналитически не решаемые уравнения, в которых желаемый эффект – это ключевой момент! – учитывается так, как будто он реально существует. Чем сильнее уравнения наворочены, и чем больше параметров в них входит, тем лучше. Потому что тем неочевиднее для посторонних глаз становится смысл дальнейшего таинства «оптимизации». А таинство это вот какое. С помощью быстродействующих ЭВМ варьируются входящие в уравнения параметры таким образом, чтобы найти наилучшее согласие между теорией, в которой желаемый эффект есть, и опытными данными, в которых этого эффекта нет. Кому-то с непривычки может показаться странным, о каком же «наилучшем согласии» может идти речь в таком случае. Да уж о таком, какое получается! Конечно, здесь получается наилучший вариант из никудышных, но он по-честному наилучший! В этом и смысл «оптимизации»: не зря же ЭВМ гоняли, в самом деле! Вот и выдаст ЭВМ пачку значений «оптимизированных» параметров. Причём выходит особенно мило, если в число этих параметров были включены какие-либо физические постоянные, имеющие важное прикладное значение. После «оптимизации» значения этих постоянных оказываются уточнёнными! Пользуйтесь, товарищи дорогие! И пусть теперь попробует кто-нибудь из дорогих товарищей усомниться в том, что эффект, ради которого затевалась вся эта «оптимизация», реально существует. Как же, мол, ему не существовать, если он учитывался в теории, и было найдено наилучшее согласие этой теории с опытными данными!

 

Так вот, вернёмся к синодической болтанке Земли «к Солнцу – от Солнца». Все свидетельства о её существовании держатся на одном и том же честном слове: мы, мол, учитывали её в уравнениях, и после оптимизации многих параметров она чудненько засвидетельствовалась. Именно так делалось, например, при радиолокации планет, где синодическая болтанка Земли «к Солнцу – от Солнца», имей она место, прямо дала бы соответствующую волну во временах прохождения радиоимпульсов туда-обратно. Казалось бы, чего проще – покажите нам эту волну! Нет-нет, отвечают нам, не всё так просто: без оптимизации многих параметров тут ни фига не получается! А с оптимизацией – милое дело; заодно и система фундаментальных астрономических постоянных уточнилась!

Или вот, ещё одна любимая игрушка: слежение за автоматическими межпланетными станциями. Полёт к Венере, например, обычно длится около трёх с половиной месяцев. При плотном радиоконтроле скорости станции и её удаления от Земли волна из-за синодической болтанки Земли проявилась бы, опять же, во всём своём великолепии. И снова нас методично лишают радости полюбоваться на это великолепие. Впрочем, известен случай, когда американцы обошлись без оптимизации многих параметров. По результатам слежения за «Маринером-6» и «Маринером-7», они чётко заявили о месячной волне в дальномерных и допплеровских данных, по амплитуде которой «прямо и надёжно» определялась амплитуда обращения Земли около центра масс Земля-Луна. Причём, геометрия слежения была такова, что месячную волну дала бы как раз болтанка Земли «к Солнцу – от Солнца»! И мы поначалу недоумевали: что это за исключение вылезло? Неужто в самом деле, неужто не шутя?! Оказалось – шутя! Амплитуда-то болтанки Земли принималась такой, при которой «устранялась по методу наименьших квадратов месячная волна остаточных уклонений в данных слежения». Выходит, что месячная волна наблюдалась (держитесь крепче! ) в остаточных уклонениях?! А, спрашивается, в уклонениях от чего? Ну, конечно же, от теоретического прогноза, в котором считалось, что болтанка Земли «к Солнцу – от Солнца» имеет место. Но, если бы этот прогноз был верен, то остаточные уклонения были бы нулевые! И, значит… американцы, не желая того, доказали, что синодическая болтанка Земли «к Солнцу – от Солнца»… ну, в общем, что этой болтанки НЕТ! За что боролись, на то и напоролись!

 

Что же это получается, товарищи учёные? Вы, кажется, вслед за Лапласом утверждаете, что движение Луны вокруг Земли происходит в таком великолепном согласии с законом всемирного тяготения, что на этот счёт не может быть никаких сомнений. Но откуда же быть этому великолепному согласию при таких невероятных манёврах у пары Земля-Луна? Когда Луна совершает орбитальное движение вокруг некоторого условного центра, а Земля не обращается около него, как положено, а совершает одномерные колебания! И амплитуда у этих колебаний вполне приличная: те самые 4670 км. Прямо-таки неловко становится: обращение Земли – это одно, а одномерные колебания, даже с той же самой амплитудой – это ведь совсем другое! Мальчика от девочки отличить не можете! Вы ещё скажите, что если картина движения пары Земля-Луна была бы такой бредовой – Луна летает по орбите, а Земля под ней колеблется – то это с очевидностью проявилось бы в видимом движении Луны. Посмотрите же правде в глаза: именно это с очевидностью и проявляется!

Ведь с давних пор расписание движения Луны по небесной сфере представляло большой практический интерес. Нарушения ровного расписания хорошо известны, они называются неравенствами в движении Луны. Второе по величине периодическое неравенство в долготе, описывающее ускорения-замедления ходя Луны по небесной сфере, называется вариация. Именно такие, как говорит вариация, ускорения-замедления видимого хода Луны (и соответствующие им периодические изменения расстояния до Луны) должны иметь место, если Луна летает по орбите, а Земля под ней колеблется! Следует лишь уточнить, что при равенстве периодов орбитального обращения Луны и колебаний Земли эти обращение и колебания сфазированы определённым образом. А именно: в новолуние и полнолуние Земля проходит через центр своих колебаний, а в серединах между новолуниями и полнолуниями Земля находится в том или ином крайнем отклонении от центра своих колебаний – в противоположную от Луны сторону. Невероятно, но вариация и соответствующие ей периодические изменения расстояния до Луны оказываются чисто геометрическими следствиями того, что у Луны движение орбитальное, а у Земли – колебательное. Согласитесь, трудно назвать бредовой картину, которая обнаруживается самым прямым методом, т. е. методом пристального вглядывания!

Надо всего лишь верить своим глазам, вооружённым телескопами! И вот они, реалии: несмотря на то, что у Луны имеется собственное тяготение (действующее, впрочем, лишь в небольшой окололунной области), Луна движется в сфере тяготения Земли как болванка, которая Землю не притягивает. Ибо если бы Луна Землю притягивала, у Земли была бы полноценная динамическая реакция, т. е. обращение около общего центра масс. Но, как мы видели, вместо этого обращения имеют место одномерные колебания. Каково же их происхождение? Есть такая точка зрения: их происхождение обусловлено тем, что они специально организованы, для чего орбитальная скорость сферы тяготения Земли модулируется с периодом в синодический месяц.

 

Тут любознательные читатели могут спросить: «Кем же это специально организовано, кем? » А у вас, любознательные читатели, не возникает вопрос: кем специально организованы электроны, протоны, и всё остальное? Или, пардон, вы полагаете, что всё оно само собой организовалось? Тогда – тоже без проблем: считайте, что и модуляция орбитальной скорости земной сферы тяготения организовалась сама собой. Да так удачно, чертяка, к месту пришлась! Результирующая болтанка земной сферы тяготения вперёд-назад служит синхронизатором движения Луны, задавая период её обращения вокруг Земли! С ума сойти можно! Кстати, именно из-за этой болтанки земной сферы тяготения вперёд-назад, возникают обусловленные инерциальными свойствами Луны «ускорения сноса», которые приводят как раз к таким периодическим изменениям параметров орбиты Луны, о которых и говорилось выше. Эти периодические эволюции орбиты описываются неравенством в долготе, которое называется эвекция, а также соответствующими периодическими изменениями расстояния до Луны.

Смотрите, как складно получается: эвекция, со своими изменениями расстояния до Луны, отражает переменные деформации лунной орбиты, а вариация, со своими изменениями расстояния до Луны, отражает её постоянные деформации. Ньютон полагал, что и те, и другие имеют один и тот же источник: возмущения со стороны Солнца. Но тогда переменные и постоянные деформации должны быть взаимозависимы, поскольку одна часть возмущающего воздействия должна тратиться на переменные деформации, а другая – на постоянные. В действительности же эти два типа деформаций совершенно независимы друг от друга. Значит, их источник – не один и тот же. И, точно, у нас так и есть: постоянные деформации – это эффект чисто геометрический, несиловой; а переменные деформации – это эффект силовой, порождаемый «ускорениями сноса» Луны.

Как видите, Солнце здесь оказывается вообще ни при чём. Помните, мы говорили о том, что в пределах планетарных сфер тяготения солнечное тяготение отключено? Ну, вот, и земная сфера тяготения в этом смысле не исключение. Душераздирающее получается зрелище: Солнце не притягивает Луну, а Луна не притягивает Землю… И, если об этом знать, тогда-то и становятся понятны выкрутасы парочки Земля-Луна, которые певцами всемирного тяготения в лучшем случае лишь констатируются.

 

Ну, а помимо этих выкрутасов, проясняется кое-что из происходящего на самой Земле, для которой болтанка своей сферы тяготения вперёд-назад тоже не проходит бесследно. Ведь эта болтанка порождает колебательное ускорение Земли, текущий вектор которого следует прибавлять к векторам силы тяжести, действующей на различные объёмчики вещества планеты. Так вот, о том, что Земля при движении по орбите колеблется вперёд-назад, а не обращается около условного центра пары Земля-Луна, свидетельствовала бы даже статистика землетрясений. Ведь вероятность землетрясения повышается при максимальных возмущениях местного вектора силы тяжести. Согласно закону всемирного тяготения эти возмущения максимальны в окрестностях новолуния и полнолуния, когда максимальна сумма возмущающих воздействий Луны и Солнца. А согласно вышеизложенному возмущения максимальны, наоборот, в серединках между новолуниями и полнолуниями, когда колебательное ускорение Земли максимально по величине. Кому-то это может показаться антинаучным, но землетрясения заметно чаще происходят в серединках между новолуниями и полнолуниями. Хоть стой, хоть падай!

 

А ещё, мы обещали вернуться к лунным океанским приливам. Собственно, «лунные» – это, как говорится, одно название, раз уж Луна не вызывает на Земле никаких силовых реакций. Не Луна является генератором лунных океанских приливов! Их причина – хоть поверьте, хоть проверьте – в том самом векторе колебательного ускорения Земли, который прибавляется к местным векторам силы тяжести. Результирующие векторы совершают вращательные уклонения с периодом в сутки, генерируя, как рассказано выше, вращающиеся приливные волны. Их расчётная амплитуда вполне соответствует реальной. Но почему же они вращаются с периодом в лунные сутки, а не в солнечные? Дело в том, что вблизи новолуний и полнолуний при переходе Земли через нулевое колебательное смещение вектор колебательного ускорения также переходит через ноль и изменяет своё направление в пространстве на противоположное. При этом фазы вращательных уклонений отвесов (генераторов вращающихся приливных волн) испытывают скачок на 180о. После этого приливные волны восстанавливают синхронизм со своими генераторами, что из-за инертных свойств воды занимает некоторое время и осуществляется через небольшое увеличение периода вращения. Если такое восстановление синхронизма длится половину синодического месяца, то увеличенный период вращения равен как раз средним лунным суткам. Кстати, обычно максимальные и минимальные размахи суточных приливов запаздывают; иногда на несколько суток по отношению к соответствующим фазам колебательного цикла Земли. Если отбросить поправки на эти запаздывания, то на типичных кривых суточных приливов хорошо видно, что их минимальные, практически, нулевые, размахи приходятся на новолуния и полнолуния, а максимальные – на серединки между ними. Это соответствует изменениям колебательного ускорения Земли, и, опять же, жутко противоречит требованиям закона всемирного тяготения, согласно которому высоты приливов должны быть максимальны в новолуния и полнолуния!

 

Уважаемые читатели, у вас от проколов закона всемирного тяготения ещё в глазах не мелькает? А то хотелось бы ещё добавить несколько слов про аномальное тяготение Луны. В данном случае слово «аномальное» означает вовсе не то, что лунное тяготение не укладывается в рамки закона всемирного тяготения: в эти рамки не укладывается и нормальное планетарное тяготение. Лунное аномальное тяготение не укладывается вообще ни в какие рамки! Известно, что имеется окололунная область пространства, в которой могут двигаться искусственные спутники Луны, но эта область не обладает свойствами планетарной сферы тяготения! Не наблюдается никаких пограничных эффектов при влёте космического аппарата в область лунного тяготения: истинная-однозначная скорость не скачет, радиосвязь не пропадает… «Так это же здорово, – обрадуются сторонники всемирного тяготения, – это значит, никакой границы нет! Всё по нашему закону: тяготение Луны безгранично! » Ага! Мы же видели, что оно даже на Землю не действует! Границы-то у него есть… в пределах которых космический аппарат притягивается не только к Земле, но и к Луне. «Так это же здорово, – опять обрадуются сторонники всемирного тяготения. – Сложение притяжений – это как раз по нашему закону! » Ага! По вашему закону, большое космическое тело, имеющее собственное тяготение, характеризуется «сферой действия» (термин из космонавтики), в пределах которой движение космического аппарата определяется притяжением, практически только к этому телу, а действием других больших тел можно начисто пренебречь. Считается, что радиус сферы действия Луны равен 66000 км. Но орбиты искусственных спутников Луны, даже весьма низкие, испытывают сильные эволюции, которые не объяснить действием региональных аномалий лунного тяготения. Приходится теоретикам приговаривать что-то такое насчёт возмущений со стороны Земли и Солнца… Ну тогда скажите честно, что для Луны не писан закон сферы действия! Эволюции орбит спутников Луны вы этим всё равно не объясните, но хоть на душе у вас легче станет! В том-то и необычность, что в области действия тяготения Луны земное тяготение не только не отключено (как это было бы, имей Луна сферу тяготения, подобную планетарной), но и, вдобавок к этому, истинные-однозначные скорости там определяются не в селеноцентрической системе отсчёта, а в геоцентрической! Это касается и самой Луны: её истинная-однозначная скорость не равна нулю, как это было бы, имей она сферу тяготения, подобную планетарной. Эта скорость равна скорости орбитального движения вокруг Земли, т. е., примерно 1 км/с. Это касается и спутников Луны: их обращение по окололунным орбитам является результатом мелких окололунных трепыханий, наложенных на главное движение – вокруг Земли. Вот при таком подходе, сильные эволюции окололунных орбит находят хоть какое-то объяснение!

 

Но даже не это главное. Аномальность тяготения Луны ненавязчиво указывает нам на то, что тяготение можно устроить по-разному: и так, и этак! От универсальности механизма действия тяготения остаются рожки да ножки! Единственное, что есть общего у планетарного и лунного тяготения – и то, и другое порождаются не веществом. Причём, в случае Луны, непричастность вещества к порождению тяготения проявляется особенно изысканно. Вы только не волнуйтесь, но есть экспериментальные свидетельства о том, что Луна представляет из себя не сплошное тело, а тонкостенную оболочку. Об этом говорят, в частности, результаты работы сейсмодатчиков на её поверхности. Сейсмические события, на которые реагировали эти датчики, вызывали и искусственно, для чего на поверхность Луны направляли отработанные разгонные ступени ракет. Поразительным было то, что результирующие «лунотрясения» длились невероятно долго. Так, после удара о поверхность Луны третьей ступени ракеты, разгонявшей корабль «Аполлон-13», «сейсмозвон детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут». Это было написано не где-нибудь, а в престижном супернаучном журнале Science – топором уже не вырубишь. Ясно, что сейсмические колебания, которые затухают так медленно, нетипичны для сплошного тела. Наоборот, они типичны для полого резонатора. Так что вопрос об истинной массе Луны, определяемой не силой тяжести в её окрестностях, а количеством её вещества – это вопрос очень интересный…

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...