6.4. Об электрическом токе в металлах.
Эта концепция сразу же заработала на всю свою эвристическую мощь. И в первую очередь применительно к чему? Да к металлам! Про которые детям ещё в школе впаривают, что электричество в них переносится только свободными электронами. Бедные дети… они такие доверчивые! И ведь сразу не догадаешься, что детям впаривают полуправду, которая как известно хуже, чем ложь. Кто бы сомневался в том, что свободные электроны в металлах есть. На это указывает хотя бы термоэмиссия, а также холодная эмиссия, т. е. вытягивание электронов из металла сильным электрическим «полем». Но много ли свободных электронов в металлах? – вот в чём вопрос. Теория тут уже давно впереди паровоза бежит, аж запыхалась. Теоретик Друде, будучи в здравом уме и трезвой памяти, клялся и божился, что для той хорошей электропроводности, какая есть у металлов, на каждый атом в металле должен приходиться один свободный электрон. Ни больше, ни меньше. Т. е. атомы в куске металла должны быть тотально ионизованы. Эх, подвела трезвая память теоретика Друде: он позабыл разъяснить, по мановению какой волшебной палочки все атомы скопом ионизуются, да при температуре не в миллиарды градусов, а при какой-нибудь там комнатной. Загадка природы! У нас в деревне в таких случаях говорят: «Листья дуба падают с ясеня…»
Кстати, есть ведь металлы, атомы которых имеют всего по одному валентному электрону. Если все эти атомы отдадут по электрону ради нужд хорошей электропроводности, то у них не останется возможностей образовывать химические связи друг с другом. Тогда на чём же держится металлическая кристаллическая решётка? Теоретики выработали ответ и на этот вопрос. Будучи в здравом уме и трезвой памяти, они свистнули на помощь квантовую механику, и с тех пор клянутся и божатся, что структура металлов держится на совершенно особой связи, порождаемой газом тех самых свободных электронов. То есть, уже не вполне свободных.
Видите ли, у квантовой механики дар похлеще, чем у царя Мидаса. Всё, к чему тот прикасался, превращалось в золото, через это бедняга и кончился. А всё, к чему прикасается квантовая механика, превращается в мешок с дерьмом, вывернутый наизнанку. После такого чудесного прикосновения квантовой механики свободные электроны в металлах стали считаться немного связанными. Причём каждый из них стал считаться немного связанным не с каким-нибудь одним атомом, а со всеми сразу. По-научному это звучит так: «Каждый электрон из газа свободных электронов «как бы принадлежит сразу всем атомам решётки». Понимаете? Это условно-беременной женщиной быть нельзя, а условно-свободным электроном, погрязшим в лёгких связях со всеми атомными ядрами в своём куске, можно! Была бы на то воля сочинившего сие!
Впрочем, сочинителей было несколько, и каждый из них полагал за аксиому, что остальные должны подстраиваться под него. В результате этой нешуточной подковёрной борьбы появилась на свет шуточная зонная теория твёрдого тела, которая, как договорились считать в высоконаучных кругах, объясняет хорошую электропроводность металлов. А шуточная она потому, что основана на т. н. «одноэлектронном приближении», согласно которому каждый электрон из газа свободных электронов взаимодействует только с ионами решётки, а остальных свободных электронов как бы нет. Очень они мешают теоретикам, эти остальные свободные электроны. Если считать, что их там набирается на целый «электронный газ», то хорошей электропроводности у металлов не бывать. Другое дело – структура кристаллической решётки металла: тут, мол, без электронного газа никак.
Вы уж, дяденьки, определитесь! И, потом: не стыдно вам на электронный газ лишнее наговаривать? Он конечно вместе с ионами мог бы обеспечить квазинейтральность, как в облаке плазмы, но каким это образом он мог бы обеспечить жёсткую кристаллическую структуру? Вон, в той же плазме, почему там нет жёстких кристаллических структур? Высокая температура мешает, что ли? Вот незадача… а охладишь плазму, так электроны с ионами прорекомбинируют, и от электронного газа кукиш останется. Ну до чего же нелепо Природа устроена; совсем не так, как теоретикам нужно!
«Тем хуже для Природы! » – подбадривали себя теоретики. Заладили: «в металлах электронный газ, электронный газ…» Сейчас мы покажем, какой там «электронный газ». Помните мультик про козлёнка, который умел считать до десяти? Ну, вот. В справочниках даны плотности металлов и их атомные массы. Этих данных достаточно, чтобы рассчитать средние расстояния между атомами в металлических кристаллах. А ещё в справочниках даны экспериментальные значения радиусов атомов металлов. Остаётся применить метод пристального вглядывания и убедиться в том, что в металлах средние междуатомные расстояния близки к величине удвоенного атомного радиуса. Вот те раз! Это означает, что кристаллическая решётка металла формируется при непременном участии самых внешних атомарных электронов! Т. е. эти электроны конкретно входят в состав атомов, а не в состав электронного газа!
Дорогой читатель, заметьте: мы не говорим, что свободных электронов в металлах совсем нет. Они есть, но… короче, их очень мало. Мы даже можем сказать, насколько очень. А помогут нам в этом те самые Толмен и Стюарт, которые изящненько доказали, что свободные электроны в металлах таки есть. Хорошенько заэкранировавшись от магнитного поля Земли, они намотали на катушку длинную и тонкую медную проволоку, концы которой присоединили к гальванометру. Катушку с проволокой приводили в быстрое вращение, а потом – хряп! – резко останавливали. И гальванометр регистрировал слабый импульс тока. Деваться некуда: этот импульс тока давали заряженные частицы, двигавшиеся в проволоке по инерции после остановки вращения. А что это за частицы? Извольте: во-первых, направление импульса тока указывало на отрицательный заряд этих частиц. Во-вторых, рассчитывался их удельный заряд. Он оказался таким же, как и у частичек катодных лучей. Ну, тогда однозначно, это электроны! Причём свободные, если они там ухитряются двигаться по инерции. Всё? Нет, не всё. Ещё можно было рассчитать и количество этих свободных электронов, но Толмен и Стюарт об этом умолчали. Может, неспроста? Ведь из их данных получается, что в меди (одном из лучших проводников) один свободный электрон приходится не на десять атомов, не на сотню их и даже не на тысячу, а на полтора-два миллиона! «Беда, беда, конец концепции газа свободных электронов! »
Видите, так и есть: за редчайшим исключением, каждый электрон в металле входит в состав того или иного атома, и значит структура решётки держится не на газе свободных электронов, а на обычных химических связях. Впрочем, на не совсем обычных. Помните, есть металлы, у атомов которых всего один валентный электрон? Такой атом может образовать одну химическую связь, а для поддержания трёхмерной решётки требуется как минимум три связи на атом. Тупик, что ли? Наоборот, выход на оперативный простор! Конечно, атом с одним валентным электроном не может образовать три связи одновременно. Но он может образовывать их попеременно, связываясь с соседями по очереди. Для этого статусы внешних электронов в атоме должны циклически переключаться (чисто программными средствами): побыл ты какое-то время валентным, т. е. способным создать связь – передай этот статус другому и т. д. Куча атомов с такими циклическими переключениями направленных валентностей вполне способна поддерживать трёхмерную структуру. Только химические связи в такой структуре не стационарные, а переключаемые, и структура является динамической.
В это с трудом верится? Знаете, у нас тоже поначалу глаза были круглые. А потом как пошли потоком факты, которые объяснялись одним махом! Тут и пластичность-ковкость металлов, в отличие от хрупкости кристаллов с железобетонными химическими связями. Тут и потрясающая химическая агрессивность чистых поверхностей металлов. Тут и проникновение атомов из одного металлического образца в другой, когда они сильно прижаты друг к другу. Тут и лёгкое проникновение в подогретые металлические образцы атомов примесей, например, углерода. Тут и убийственный факт нестабильности молекул металлов: пар ы металлов конкретно одноатомны.
Жуть какая-то: если атом металла имеет один валентный электрон, то почему бы двум таким атомам не соединиться в стабильненькую двухатомную молекулу? Что мешает? А то и мешает, что электроны в атомах металлов являются валентными по очереди. Если даже два таких атома ухитрятся и успеют сцепиться в молекулу, то при первом же переключении валентного статуса эта сцепка развалится. Между прочим, частота этих валентных переключений является важной характеристикой металла. От неё зависят его механические и химические свойства. Причём эта частота изменяется с изменением температуры, и свойства металла соответственно тоже. Иногда это выглядит впечатляюще. В Антарктиде обнаружилось: при –70оС тонкий дюралевый лист можно резким движением «порвать как бумагу», а ещё при такой температуре дюраль отлично горит на открытом воздухе!
А к чему мы заладили про валентные переключения в атомах металлов? Да к тому, что эти переключения играют ключевую роль в электронной проводимости металлов. В идеальном монокристалле металла валентные переключения идеально согласованы. Но реальные проводники являются конгломератами микрокристалликов. На границах этих микрокристалликов, а также на дефектах их кристаллических решёток нарушается согласованность валентных переключений, поэтому эти границы и дефекты являются своеобразными генераторами свободных электронов. Если к проводнику приложено электрическое напряжение, то эти свободные электроны пытаются двигаться к аноду. Но куда там! Тут же натыкаются на атомы. Это только большие учёные любят рассуждать о том, что свободные электроны движутся в кристалле, проходя сквозь атомы. Ведь атомы по-ихнему «состоят в основном из пустоты»! Белочки и зайчики, стряхните эту лапшу со своих ушек! Отлично известно, что глубина проникновения свободного электрона в атом зависит от энергии этого электрона. Чтобы добраться до какой-нибудь внутренней электронной оболочки в атоме, свободный электрон должен иметь такую же энергию, как и энергия связи электронов в этой оболочке. Чтобы добраться до ядра, он должен иметь энергию большую, чем энергия связи у самого сильно связанного атомарного электрона! Вот почему для низкоэнергичных электронов кристаллическая структура твёрдого тела с плотной упаковкой атомов является непреодолимым препятствием. Иначе в природе не было бы никаких диэлектриков.
Да, но что же тогда отличает металлы от диэлектриков, если свободные электроны сквозь металлы всё-таки проходят? Да нестационарность химических связей и отличает, ёжики! У свободного электрона, упёршегося в атом с нестационарными химическими связями, есть шанс улучить момент и войти в состав этого атома с освобождением электрона, входившего в состав этого атома прежде. Этот новоиспечённый свободный электрон продвинется к аноду и тоже упрётся в атом, где сценарий замещения-освобождения может повториться, и так далее. В таком режиме «ротации кадров» между свободными и связанными электронами и будет происходить продвижение электронов к аноду. Кстати, можно сделать грубую оценку для скорости такого продвижения. Для этого междуатомное расстояние, скажем, 3 Ангстрем поделим на период цикла валентных переключений, частота которых при комнатной температуре, как нам подсказывают, имеет порядок 1010 Гц. Тогда для скорости продвижения электронов получим величину 3 м/с. Если учесть, что продвижение электронов происходит не вполне по прямым, да не через каждый атом, да не на каждый цикл переключений валентностей… и сбросить на все эти дела пару порядков, то в итоге получим сантиметры в секунду. Эта близко к тому, что и обнаруживается в экспериментах по определению «подвижности свободных электронов в металлах».
А теперь ещё одна интересность. Каждый новоиспечённый свободный электрон в металле, торкнувшись в сторону анода, успевает набрать какую-никакую энергию до того, как упереться в атом. Допустим, произошла эта тихая смена с замещением-освобождением. Электрон, который оказался замещён, освобождён и послан, сами понимаете, к аноду; этот электрон начинает свой путь, имея нулевую энергию. А куда девается та энергия, с которой пришлый электрон шмякнулся в атом? А она не девается, а превращается, причём не во что-нибудь, а в тепло. Узнаёте? Это же и есть механизм выделения джоулева тепла при продвижении электронов в проводнике! Только обращаем внимание: из этого объяснения следует, что продвижение электронов в проводнике сопровождается выделением джоулева тепла непременно . Тут академики, широко улыбнувшись, напомнят нам про явление сверхпроводимости. Супер-пупер упорядоченное движение электронов, мол, есть, а выделения джоулева тепла – нету! Это что же, приговор тому, что мы тут излагаем? Подождите, надо разобраться! Ведь здесь возможны варианты! Вдруг окажется, что при т. н. сверхпроводимости никакого упорядоченного движения электронов нет вовсе?
Вы погодите смеяться. Одна минута идиотского смеха сокращает жизнь на одну минуту! Помните, мы говорили про два способа переноса электричества? Про то, как в металлах реализуется первый из них (через движение электронов) мы уже пару слов сказали. Теперь скажем пару слов про второй из них, через движение зарядовых разбалансов. У этого второго способа есть принципиальные отличия от первого. Электроны имеют какую-никакую массу, поэтому перенос электричества в металлах через движение электронов является процессом инерционным и, как мы видели выше, довольно медленным. При движении же зарядовых разбалансов не происходит переноса вещества, поэтому такой процесс переноса электричества является безынерционным, и он может происходить с сумасшедшей скоростью, достигающей скорости света. Вы спросите, где такое видано? Здрасьте-пожалста! Да чуть не на каждом шагу! Вот двухпроводная линия с длиной в 10 км, к дальним контактам которой присоединён конденсатор. После замыкания рубильника, подключающего источник постоянного напряжения к ближним контактам этой линии, как быстро появится напряжение на конденсаторе? Правильно, оно появится с задержкой, равной частному от деления длины линии, 10 км, на скорость света, т. е. через 33 микросекунды. Ясно, что такое молниеносное появление напряжения на конденсаторе обеспечивается вовсе не притоком электронов на отрицательную обкладку и оттоком их от положительной обкладки, поскольку электроны продвигаются с черепашьей скоростью. Хуже того, задержка на молниеносное появление напряжения не зависит от ёмкости конденсатора! А ведь если здесь дело было бы в притоке-оттоке электронов, то появление того же самого напряжения на конденсаторе большей ёмкости потребовало бы притока-оттока большего количества электронов, а значит и большей временной задержки.
Да электротехники это хорошо знают: постоянная времени для зарядки конденсатора через приток-отток электронов равна произведению ёмкости конденсатора на омическое сопротивление цепочки. Чудненько! Так чем тогда обеспечивается молниеносное появление напряжения на конденсаторе с задержкой, которая не зависит от его ёмкости? Будем валять дурака дальше или для разнообразия допустим, что дело здесь в движении по проводам всплесков электричества, образуемых зарядовыми разбалансами? Ведь эти две зарядки конденсатора, через приток-отток электронов и через индуцирование зарядовых разбалансов, различаются не только по своим характерным временам. Результаты этих двух зарядок (при одном и том же получившемся напряжении на конденсаторе) различаются кардинально. Зарядку через приток-отток электронов можно назвать активной: такой активно заряженный конденсатор может дать мощную разрядную искру в воздухе при попытке замкнуть его выводы. Зарядку же через индуцирование зарядовых разбалансов можно назвать реактивной: если, как в нашем примере с 10-километровой линией, оторвать от неё конденсатор через 33 микросекунды после подачи напряжения на линию, то, не пройдя стадию притока-оттока электронов, мощной разрядной искры конденсатор не даст. Да и вообще, при движении зарядовых разбалансов по проводникам даже джоулево тепло не выделяется. С чего ему выделяться?
Это свойство, т. е. отсутствие выделения джоулева тепла, особенно показательно проявляется в постоянных магнитах. Помните, мы говорили о нестационарных, переключаемых химических связях в металлах? При условии высокой упорядоченности этих переключений, имеет смысл говорить о миграциях химических связей в образце. Причём эти миграции могут циклически повторяться вдоль одних и тех же замкнутых цепочек атомов. Теперь представьте: такой образец находится под воздействием внешнего магнитного «поля». И в образце происходит нечто поразительное. А именно, внешнее «поле» индуцирует подвижки зарядовых разбалансов: их миграции происходят вместе с миграциями химических связей вдоль тех же замкнутых цепочек атомов. Это называется «стадия намагничивания». Когда внешнее «поле» устраняют и намагничивание прекращается, миграции химических связей продолжаются, как ни в чём не бывало. Но теперь вместе с химическими связями мигрируют зарядовые разбалансы, которые никуда не исчезли. А движение зарядовых разбалансов по замкнутым траекториям – это движение электричества по замкнутым траекториям. Т. е. это замкнутые токи, которые сами порождают магнитное «поле».
Красота! Пока цел кусок металла, химические связи мигрируют. А вместе с ними мигрируют зарядовые разбалансы. Годами и десятилетиями! Что им сделается? Они же каши не просят, и на джоулево тепло себя не расходуют. Не в этом ли секрет постоянных магнитиков? Или это настолько похоже на правду, что в это невозможно поверить?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|