Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция 4. Канальный уровень




Краткая аннотация лекции: приведено описание верхнего подуровня логической передачи данных LLC и нижнего подуровня управления доступом к среде MAC канального уровня модели OSI; даны основные характеристики технологии Ethernet; проведен сравнительный анализ режимов работы коммутаторов.

Цель лекции: изучить функции элементов и устройств канального уровня модели OSI.

4.1. Подуровни LLC и MAC

Канальный уровень (Data Link) обеспечивает обмен данными через общую локальную среду. Он находится между сетевым и физическим уровнями модели OSI. Поэтому канальный уровень должен предоставлять сервис вышележащему уровню, взаимодействуя с сетевым протоколом и обеспечивая инкапсулированным в кадр пакетам доступ к сетевой среде. В то же время, канальный уровень управляет процессом размещения передаваемых данных в физической среде. Поэтому канальный уровень разделен на 2 подуровня (Рисунок4.1): верхний подуровень управления логическим каналом передачи данных (Logical Link Control – LLC), являющийся общим для всех технологий, и нижний подуровень управления доступом к среде (Media Access Control – MAC). Кроме того, на канальном уровне обнаруживают ошибки в передаваемых данных.

Рисунок 4.1. Подуровни канального уровня Взаимодействие узлов локальных сетей происходит на основе протоколов канального уровня. Международным институтом инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers – IEEE) было разработано семейство стандартов 802.х, которое регламентирует функционирование канального и физического уровней семиуровневой модели ISO/OSI. Ряд этих протоколов являются общими для всех технологий, например, стандарт 802.2, другие протоколы (например, 802.3, 802.3u, 802.5) определяют особенности технологий локальных сетей.

На подуровне LLCсуществует несколько процедур, которые позволяют устанавливать или не устанавливать связь перед передачей кадров, содержащих данные, восстанавливать или не восстанавливать кадры при их потере или обнаружении ошибок. Этот подуровень реализует связь с протоколами сетевого уровня. Связь с сетевым уровнем и определение логических процедур передачи кадров по сети реализует протокол 802.2. Протокол 802.1 дает общие определения локальных вычислительных сетей, связь с моделью ISO/OSI. Существуют также модификации этого протокола, которые будут рассмотрены позже в лекции 15.

Подуровень МАСопределяет особенности доступа к физической среде при использовании различных технологий локальных сетей. Протоколы МАС-уровня ориентированы на совместное использование физической среды абонентами. Разделяемая среда (shared media) используется в таких широко распространенных в локальных сетях технологиях как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI. Использование разделяемой между пользователями среды улучшает загрузку канала связи, удешевляет сеть, но снижает скорость передачи данных между узлами.

Каждой технологии МАС-уровня соответствует несколько вариантов (спецификаций) протоколов физического уровня (Рисунок4.1). Спецификациятехнологии МАС-уровня – определяет среду физического уровня и основные параметры передачи данных (скорость передачи, вид среды, узкополосная или широкополосная).

Так протоколу 802.3, описывающему известную технологию Ethernet, соответствуют спецификации физического уровня: 10Base-T, 10Base-FB, 10Base-FL. Число 10 показывает, что скорость передачи данных составляет 10 Мбит/с, Base – система узкополосная. Спецификация 10Base-T предусматривает построение локальной сети на основе использования неэкранированной витой пары UTP не ниже 3 категории и концентратора. Спецификации 10Base-FB, 10Base-FL используют волоконно-оптические кабели. Более ранние спецификации 10Base-5 и 10Base-2 предусматривали использование “толстого” или “тонкого” коаксиального кабеля.

Протоколу Fast Ethernet (802.3u) соответствуют следующие спецификации физического уровня:

- 100Base-T4, где используется четыре витых пары кабеля UTP не ниже 3 категории;

- 100Base-TX – применяется две пары кабеля UTP не ниже 5 категории;

- 100Base-FX – используются волокна многомодового оптического кабеля.

Помимо Ethernet и Fast Ethernet на МАС уровне используется еще ряд технологий: Gigabit Ethernet со скоростью передачи 1000 Мбит/c – стандарты 802.3z и 802.3ab; 10Gigabit Ethernet со скоростью передачи 10000 Мбит/c – стандарт 802.3ае, а также ряд других. Например, протокол 802.5 описывает технологию сетей Token Ring, где в качестве физической среды используется экранированная витая пара STP, с помощью которой все станции сети соединяются в кольцевую структуру. В отличие от технологии Ethernet в сетях с передачей маркера (Token Ring) реализуется не случайный, а детерминированный доступ к среде с помощью кадра специального формата – маркера (token). Сети Token Ring позволяют передавать данные по кольцу со скоростями либо 4 Мбит/c, либо 16 Мбит/c. По сравнению с Ethernet технология Token Ring более сложная и надежная, однако, Token Ring не совместима с новыми технологиями Fast Ethernet, Gigabit Ethernet, 10Gigabit Ethernet. Технологии Ethernet и совместимые с ними и рассматриваются в настоящем курсе лекций.

Передаваемый в сеть пакет инкапсулируется в поле данных кадра протокола LLC, формат которого приведен на Рисунок4.2.

Рисунок 4.2. Формат кадра LLCФлаги определяют границы кадра LLC.

 

В поле данных (Data) размещаются пакеты сетевых протоколов. Поле адреса точки входа службы назначения (DSAP – Destination Service Access Point) и адреса точки входа службы источника (SSAP– Source Service Access Point) длиной по 1 байту адресуют службу верхнего уровня, которая передает и принимает пакет данных. Например, служба IP имеет значение SAP равное 0х6. Обычно это одинаковые адреса. Адреса DSAP и SSAP могут различаться только в том случае, если служба имеет несколько адресов точек входа. Таким образом, адреса DSAP и SSAP не являются адресами узла назначения и узла источника, да и не могут быть таковыми, поскольку поле длиной 1 байт позволяет адресовать только 256 точек, а узлов в сети может быть много.

Поле управления (Control) имеет длину 1 или 2 байта в зависимости от того, какой тип кадра передается: информационный (Information), управляющий (Supervisory), ненумерованный (Unnumbered). У первых двух длина поля Control составляет 2 байта, у ненумерованного – 1 байт. Тип кадра определяется процедурой управления логическим каналом LLC. Стандартом 802.2 предусмотрено 3 типа таких процедур:

LLC1 – процедура без установления соединения и подтверждения;

LLC2 – процедура с установлением соединения и подтверждением;

LLC3 – процедура без установления соединения, но с подтверждением.

Процедура LLC1 используется при дейтаграммном режиме передачи данных. Для передачи данных используются ненумерованные кадры. Восстановление принятых с ошибками данных производят протоколы верхних уровней, например, протокол транспортного уровня или протокол уровня приложений. В дейтаграммном режиме функционирует, например, протокол IP.

Процедура LLC2 перед началом передачи данных устанавливает соединение, послав соответствующий запрос и получив подтверждение, после чего передаются данные. Процедура позволяет восстанавливать потерянные и исправлять ошибочные данные, используя режим скользящего окна. Для этих целей она использует три типа кадров (информационные, управляющие, ненумерованные). Данная процедура более сложная и менее быстродействующая по сравнению с LLC1, поэтому она используется в локальных сетях значительно реже, чем LLC1, например, протоколом NetBIOS/NetBEUI.

Широкое применение процедура, подобная LLC2, получила в глобальных сетях для надежной передачи данных по ненадежным линиям связи. Например, она используется в протоколе LAP-B сетей Х.25, в протоколе LAP-D сетей ISDN, в протоколе LAP-M сетей с модемами, частично – в протоколе LAP-F сетей Frame Relay.

Процедура LLC3используется в системах управления технологическими процессами, когда необходимо высокое быстродействие и знание того, дошла ли управляющая информация до объекта.

Наиболее широкое распространение в локальных сетях получила процедура LLC1, в которой используются только ненумерованные типы кадров.

На передающей стороне кадр LLC уровня передается на МАС-уровень, где инкапсулируется в кадр соответствующей технологии данного уровня. При этом флаги кадра LLC отбрасываются. Технология Ethernet предусматривает кадры четырех форматов, которые незначительно отличаются друг от друга. На Рисунок4.3 приведен формат кадра стандарта 802.3/LLC.

 

Рисунок4.3. Формат кадра Ethernet 802.3/LLC

 

Преамбула кадра состоит из семи байт 10101010, необходимых для вхождения приемника в режим синхронизации. Начальный ограничитель кадра (Start of Frame Delimiter - SFD) – 10101011 вместе с преамбулой в итоге составляют 8 байт. Далее следуют физические адреса узла назначения (DA – Destination Address) и узла источника (SA – Source Address). В технологиях Ethernet физические адреса получили название МАС-адресов. Они содержат 48 двоичных разрядов и представляются в шестнадцатеричной системе. В локальных сетях адресация узлов производится на основе МАС-адресов, которые «прошиты» в ПЗУ сетевых карт.

Адрес, состоящий из всех единиц FFFFFFFFFFFF, является широковещательным адресом (broadcast), когда передаваемая в кадре информация предназначена всем узлам локальной сети. Младшие 24 разряда МАС-адреса (6 шестнадцатеричных разрядов) задают уникальный номер оборудования, например, номер сетевой карты. Следующие 22 разряда задают идентификатор производителя оборудования. Старший бит равный 0 указывает на то, что адрес является индивидуальным, а равный 1 – адрес является групповым. Второй старший бит равный 0 указывает, что идентификатор задан централизованно комитетом IEEE. В стандартной аппаратуре Ethernet идентификатор всегда задан централизованно. Например, МАС-адрес 11:5D:73:A5:00:4B является индивидуальным, заданным централизовано. Несмотря на то, что в МАС-адресе выделена старшая и младшая части, он считается плоским(flat).

Поле L (Рисунок4.3) определяет длину поля данных Data, которое может быть от 46 до 1497 байт (в информационных кадрах процедуры LLC2 – до 1496 байт, поскольку поле Control – 2 байта). Если поле данных меньше 46 байт, то оно дополняется до 46 байт.

В настоящее время используется, главным образом, формат кадра стандарта Ethernet II, в котором вместо поля L задается поле типа Т, где указан протокол сетевого уровня. Например, при использовании на сетевом уровне протокола IPv4 шестнадцатеричное значение поля Т будет 0×0800. В случае передачи кадра протокола ARP значение поля Т – 0×0806. Остальные поля кадра Ethernet II идентичны кадру стандарта 802.3.

Поле контрольной суммы (FCS – Frame Check Sequence) длиной в 4 байта позволяет определить наличие ошибок в полученном кадре, за счет использования алгоритма проверки на основе циклического кода.

4.2. Локальные сети технологии Ethernet

В сетях технологии Ethernet, построенных на основе логической топологии “общая шина”, разделяемая среда передачи данных является общей для всех пользователей, т.е. реализуется множественный доступ к общей среде. Для передачи данных используется манчестерский код, скорость передачи составляет 10 Мбит/с, т.е. длительность битового интервала равна 0,1 мкс. Между кадрами должен быть интервал длительностью 9,6 мкс. Переданную в сеть информацию может получить любой компьютер, у которого адрес сетевого адаптера совпадает с адресомDA передаваемого кадра, или все компьютеры сети при широковещательной передаче. Однако передавать информацию в любой момент времени может только один узел. Такой способ обмена данными получил название метода множественного доступа к среде с контролем несущей и обнаружением коллизий (Carrier Sence Multiply Access with Collision Detection – CSMA/CD), суть которого объясняется ниже.

При одновременной передаче данных двумя компьютерами возникает так называемая коллизия, когда данные двух передающих узлов накладываются друг на друга и происходит потеря информации. Поэтому прежде чем начать передачу, узел должен убедиться, что общая шина свободна, для чего узел прослушивает среду. Если какой либо компьютер сети уже передает данные, то в сети обнаруживается несущая частота передаваемых сигналов. Если по окончании передачи сразу два узла попытаются одновременно начать передачу своих данных, то возникнет коллизия, которая фиксируется компьютерами. Узел, первым обнаруживший коллизию, усугубляет ее путем передачи в сеть специальных JAM сигналов для оповещения всех компьютеров сети. При этом компьютеры должны немедленно прекратить передачу данных и выдержать паузу в течение некоторого случайного интервала времени. По окончании этого интервала узел может вновь попытаться передать свои данные.

Длительность паузы составляет

Тп = Т отс * L,

где Тотс – интервал отсрочки, равный 512 битовым интервалам, т.е. при скорости 10 Мбит/с интервал отсрочки Тотс = 51,2 мкс;

L – случайное целое число, выбранное из диапазона [0, 2N], где N – номер повторной попытки передачи узлом данного кадра. N изменяется от 1 до 10. Всего повторных попыток передачи может быть 16, но после 10-ой попытки число N не увеличивается. Таким образом, L может принимать значения от 0 до 1024, а пауза Тп = 0 – 52,4 мс. После 16-ой неудачной попытки, приведшей к коллизии, кадр отбрасывается.

Длительность передачи кадра Тк должна быть больше максимально возможного времени обнаружения коллизии Твок. В этом случае узел, начавший передачу и затем обнаруживший коллизию, сможет повторно передать кадр, хранящийся в буфере. В противном случае переданный кадр теряется. Наихудший случай будет при передаче кадра минимальной длительности Тк min, когда должно выполняться условие Тк min  Твок. Максимально возможное время обнаружения коллизии Твок определяется размерами сети (диаметром сети). Твок макс – это время, за которое сигнал передаваемого кадра дойдет до самого удаленного узла и сигнал о коллизии вернется обратно. Это время получило название удвоенной задержки распространения сигнала или значения задержки в пути (Path Delay Value PDV).

С учетом условия Тк min  Твок, а также времени задержки сигналов в устройствах сетевых адаптеров и концентраторов, максимальный диаметр сети Ethernet установлен 2500 м, а минимальная длина кадра вместе с преамбулой – 72 байта. Поэтому минимальная длина поля данных составляет 46 байт, а максимальная длина поля данных – 1497 байт. Основные технические характеристики сети Ethernet сведены в табл.4.1.

Таблица 4.1

 

 

До недавнего времени сети Ethernet строились, как правило, на основе стандарта 10 Base-T, который в качестве разделяемой среды использует неэкранированную витую пару UTP и многопортовый повторитель hub (Рисунок4.4). Количество портов концентраторов разных типов варьируется от 8 до 72. Выход передатчика Тх сетевого адаптера соединяется со входом приемника Rx концентратора hub, который, в свою очередь, соединен со всеми портами повторителя. Вход приемника сетевого адаптера Rx соединен с выходом передатчика концентратора Тх. Максимальное расстояние между сетевым адаптером и концентратором составляет 100 м. Таким образом, диаметр сети, выполненной на одном концентраторе, будет 200 м.

Для построения сети с большим числом узлов несколько концентраторов соединяют между собой, однако максимальное число концентраторов между двумя любыми компьютерами не должно быть больше 4. Требования к сети определяются правилом 5-4-3, в котором 5 – общее число сегментов сети, 4 – максимальное число концентраторов между любыми хостами, 3 – хосты могут быть только в трех сегментах. При этом диаметр сети может существенно увеличиться. Структура сети должна быть древовидной, петлевые соединения запрещены.

Рисунок4.4. Сеть Ethernet стандарта 10 Base-T

 

Для реализации сетей максимального диаметра 2500 м используют оптоволоконный кабель, которым соединяют между собой концентраторы или узлы и концентраторы. Стандарт 10 Base-FВ предписывает соединения только между концентраторами. Причем, между узлами сети может быть до 5 концентраторов, а диаметр сети может быть увеличен до 2740 м.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...