Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Кровь: плазма и клетки крови, гемограмма, функция крови. Мезенхима.




Объём крови в организме взрослого человека - около 5 л. В крови различают 2 компонента: плазму (межклеточное вещество) - 55- 60 % объёма крови (около 3 л) и форменные элементы - 40-45 % объёма крови. Плазма состоит из воды 90%, органических 9% и неорганических 1% веществ. Белки составляют 6% всех веществ плазмы, среди них преобладают альбумины, глобулины и фибриноген. Эритроциты (красные кровяные тельца) - 4,3-5,3 у мужчин, и 3,9-4,5 1012 /л у женщин, лейкоциты (белые кровяные клетки) - 4,8-7,7 10 9/л, тромбоциты (кровяные пластинки) - 230-350 10 9/л. Гемограмма — клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др. Функции крови Транспортная. Поддержание гомеостаза. Защитная функция. Гемокоагуляция. Мезодермальная паренхи́ма, или мезенхи́ма — зародышевая соединительная ткань большинства многоклеточных животных и человека. Мезенхима возникает за счёт клеток разных зародышевых листков (эктодермы, энтодермы и мезодермы). Из мезенхимы образуются соединительная ткань, кровеносные сосуды, главные мышцы, висцеральный скелет, пигментные клетки и нижний слой соединительнотканной части кожи.

2. Эритроциты. Эритроциты (красные кровяные тельца) - безъядерные форменные элементы крови, содержащие гемоглобин. Основная функция эритроцитов - транспортировка кислорода и углекислого газа. Эритроциты составляют основную массу форменных элементов крови. Двояковогнутый диск эритроцита обеспечивает максимальное соотношение площади поверхности к объему. Помимо участия в тканевом дыхании, эритроциты выполняют питательную и защитную функции - они доставляют питательные вещества к клеткам организма, а также, связывают токсины и переносят на своей поверхности антитела. Кроме этого, эритроциты обеспечивают поддержание кислотно-основного равновесия в крови. Содержащиеся в эритроцитах ферменты катализируют жизненно важные биохимические процессы. Эритроциты принимают участие в процессе свертывания крови. Средний диаметр эритроцитов человека 7-8 мкм. Средняя продолжительность жизни эритроцитов составляет 3-4 месяца. Старые эритроциты разрушаются в селезенке. На смену умершим эритроцитам приходят молодые формы эритроцитов – ретикулоциты.. В норме их содержится в крови 0,2-1,2% от общего числа эритроцитов. Ретику лоциты содержат зернисто-сетчатые структуры - стареющие митохондрии, остатки эндоплазматической сети и рибосом. Наличие зернисто-сетчатых структур выявляется при специальной окраске - крезиловой синькой. 3 Лейкоциты. Ядерные клетки шаровидной формы по размеру - крупнее эритроцитов. В 1 л крови взрослого человека содержится 4,8-7,7x 10 9. В цитоплазме лейкоцитов находятся гранулы первичные азурофильные (лизосомы) и вторичные. В зависимости от типа гранул лейкоциты делят на гранулоциты (зернистые) и агранулоциты (незернистые). Гранулоциты (нейтрофилы, базофилы и эозинофилы) содержат специфические и неспецифические гранулы. Агранулоциты (моноциты и лимфоциты) содержат только неспецифические азурофильные гранулы.Лейкоциты имеют сократительные белки (актин, миозин) и способны выходить из кровеносных сосудов, проникая между эндотелиальными клетками. Лейкоциты участвуют в защитных реакциях, уничтожая микроорганизмы и захватывая инородные частицы, осуществляя реакции гуморального и клеточного иммунитета.Лейкоцитарная формула (лейкограмма) — процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом. Лейкоцитарная формула здорового взрослого человека (предельные колебания, %)

Базофи лы Эозино филы Нейтрофилы Лимфо циты Моноци ты
миэло циты юные палочко-ядерные Сегменто- ядерные
0,5—1 2—4 0—1 3—5 51—67 21—35 4—8

4. Нейтрофилы, эозонофилы и базофильные гранулоциты. Нейтрофилы: Размеры 10-12 мкм. Продолжительность жизни 8 суток. Нейтрофил содержит несколько митохондрий и большое количество гликогена. В зависимости от степени дифференцировки различают палочкоядерные и сегментоядерные нейтрофилы. Содержание в крови палочкоядерных 2-5%, а сегментоядерных форм 43-59 %. Ядро сегментоядерных довольно компактное, состоит из 2-3 сегментов, соединенных мостиками ядерного вещества. В нейтрофилах женщин один из сегментов ядра содержит вырост в форме барабанной палочки – тельце Барра. Цитоплазма, окрашивается в розовый цвет, содержит мелкую обильную зернистость, принимающую синевато-розовый оттенок. Нейтрофилы обладают выраженной фагоцитарной активностью и участвуют в острой воспалительной реакции. Главная их функция – разрушение и захват тканевых обломков и микроорганизмов. Эозинофилы: составляют 1-5% лейкоцитов циркулирующих в крови. Размер эозинофила в крови больше 12 мкм. Продолжительность жизни 8-14 дней. Ядро часто состоит из двух сегментов, реже трех и более. В цитоплазме содержится хорошо развитая гранулярная эндоплазматическая сеть, небольшое количество цистерн агранулярной эндоплазматической сети, скопление рибосом, митохондрии и гликоген.Эозинофилы способны к фагоцитозу, хоть и в меньшей степени, чем нейтрофилы. Основной их функцией является уничтожение паразитов и участие в аллергических реакциях. Эозинофилы перемещаются в область с высокой концентрацией гистамина и оказывают здесь антигистаминное действие: тормозят освобождение гистамина из базофилов, а также адсорбируют его, фагоцитируют и инактивируют. Базофилы: составляют 0-1% общего числа лейкоцитов циркулирующей крови. Базофилы располагаются в красном костном мозге и кровеносном русле. В крови циркулируют 1-2 суток. Могут покидать кровоток, но в отличие от других лейкоцитов их способность к амебоидному движению ограничена. Величина от 8 до 10 мкм.Ядро клеток широкое, неправильной лопастовидной формы. Часто имеют трехдольное S образное ядро. Содержат все виды органел. Гранулы крупные (0,5-1,2 мкм) метохроматически окрашенные. Имеют овальную или округлую форму с плотным содержимым. В гранулах содержится протеогликаны (смесь гепарина с хондроитинсульфатом), пероксидаза, гистамин, медиаторы воспаления. При активации базофила происходит быстрый экзоцитоз содержимого гранул (дегрануляция). Выделение гистамина других вазоактивных факторов при дегрануляции вызывают развитие аллергической реакции немедленного типа. Такие реакции характерны для астмы и анафилактического шока.

5. Лимфоциты и моноциты. Лимфоциты: В нормальных условиях 27-45%. Клетки размером с эритроцит. Продолжительность жизни лимфоцитов колеблется в широких пределах от нескольких часов до 5 лет. Лимфоциты играют центральную роль в иммунных реакциях. Лимфоциты выходят из сосудов в соединительную ткань в ответ на специфические сигналы. Лимфоциты могут мигрировать через базальную мембрану эпителиев и внедряться в эпителии. Ядро занимает большую часть клетки, имеет круглую, овальную или слегка бобовидную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет. В части клеток в цитоплазме обнаруживается окрашивающаяся в вишневый цвет азурофильная зернистость лимфоцитов. Лимфоциты подразделяют на различные категории по их величине: малые (4,.5-6 мкм), средние (7-10 мкм) и большие (10-18 мкм). К лимфоцитам относят сходные морфологически, но различающиеся функционально клетки. Выделяют следующие типы: В-лимфоциты, Т-лимфоциты (дифференцировка в тимусе) и NК-клетки. Т – лимфоциты это преимущественно лимфоциты крови (80%). Клетка предшественница Т – лимфоцитов поступает в тимус из красного костного мозга. Зрелые лимфоциты покидают тимус и их обнаруживают в периферической крови или лимфоидных органах В лимфоциты составляют 10% лимфоцитов крови. Плазматические клетки, в которые они дифференцируются, способны вырабатывать против конкретных антител соответствующие антигены. NK клетки - не Т, и не В лимфоциты. Составляют примерно 10% от всех лимфоцитов. Содержат цитолитические гранулы, уничтожающие трансформированные инфицированные вирусом и чужеродные клетки. Моноциты: Самые крупные лейкоциты размером от 12 до 20 мкм. Содержание в условиях нормы 4-9%. Ядро большое, рыхлое, с неравномерным распределением хроматина. Форма ядра бобовидная лопастовидная, подковообразная, реже круглое или овальное. Довольно широкая кайма цитоплазмы окрашивающейся менее базофильно чем у лимфоцитов. Может обнаруживаться мелкая азурофильная зернистость. В цитоплазме содержатся многочисленные лизосомы и вакуоли. Имеются мелкие удлиненные митохондрии. Комплекс Гольджи развит хорошо. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. В переваривании участвуют лизосомные ферменты, а также формируемые внутриклеточно перекиси. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD.

6. Тромбоциты: это безъядерные фрагменты цитоплазмы, отделившиеся в красном костном мозгу от мегакариоцитов (гигантских клеток) и циркулирующие в крови. Имеют размер 2-4 мкм. Общее количество в крови 230-350 109 на 1л. Продолжительность жизни 4 дня. В центральной части тромбоцит содержит грануломер - выраженную зернистость, которая представлена гранулами, глыбками гликогена, ЭПС, митохондриями и является азурофильной. Периферическая часть тромбоцита - гомогенный гиаломер, который окрашивается по-разному в зависимости от возраста тромбоцита. На поверхности тромбоцита имеется большое количество фосфатных групп - компонентов мембранных фосфолипидов и фосфопротеинов.

7. Эмбриональный гемопоэз. Гемопоэз (лат. haemopoesis), кроветворение — это процесс образования, развития и созревания клеток крови — лейкоцитов, эритроцитов, тромбоцитов у позвоночных. Выделяют: эмбриональный (внутриутробный) гемопоэз; постэмбриональный гемопоэз. Эмбриональный гемопоэз: В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный. Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона и стебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека. Второй, гепатолиенальный этап начинается с 5—6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы. Третий, медуллярный (костномозговой) этап — это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза. Постэмбриональный гемопоэз: Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы. Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов). Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.

9. Эритроцитопоэз. начинается со стволовой кроветворной клетки. Через стадию колониеобразующей мультипотентной клетки (КОЕТЭММ) формируются бурстобразующая (БОЭ-Э) и далее колониеобразующая единица эритроцитов (КОЕ-Э). Клетки этих колоний чувствительны к факторам регуляции пролиферации и дифференцировки..В IV-й класс включаются базофильный, полихроматофильный и оксифильный эритробласты. Проэритроциты, потом ретикулоциты сосавляют V-й класс и, наконец, формируются эритроциты (VI-й класс). В эритропоэзе на стадии оксифильного эритробласта происходит выталкивание ядра. В целом цикл развития эритроцита до выхода ретикулоцита в кровь продолжается до 12 суток. Общее направление эритропоэза характеризуется следующими основными структурно-функциональными изменениями: постепенным уменьшением размеров клетки, накоплением в цитоплазме гемоглобина, редукцией органелл, снижением базофилии и повышением оксифилии цитоплазмы, уплотнением ядра с последующим его выделением из состава клетки. В эритробластических островках эритробласты поглощают путем микропиноцитоза железо, поставляемое макрофагами, для синтеза гемоглобина. Развитие эритроцитов происходит в миелоидной ткани красного костного мозга. В периферическую кровь поступают только зрелые эритроциты и немного ретикулоцитов.

10. Гранулоцитопоэз. IV класс миелобласт. Размер 12-25 мкм. V класс промиелоцит - ядро грубой структуры, наблюдаются ядрышки. Цитоплазма резко базофильна. Появляется неспецифическая зернистость. Миелоцит - Размер 10-20 мкм. Ядро круглое или овальное, ядрышки не обнаруживаются. Цитоплазма содержит неспецифическую и специфическую зернистость. В зависимости от вида специфической зернистости выделяют нейтрофильные, эозинофильные и базофильные миелоциты. Метамиелоциты (юные формы) имеют ряд общих свойств: не делятся, обнаруживаются в крови, содержат ядро бобовидной формы. Класс VI Палочкоядерные клетки - ядро похоже на толстую изогнутую палочку без перемычек. Сегментоядерные клетки – ядро состоит из нескольких сегментов, разделённых узкими перетяжками.

11. Моноцитопоэз. V класс– промоноцит. Ядро - круглое, большое, а в цитоплазме нет гранул. Конечной стадией дифференцировки клеток моноцитарного ряда является не моноцит, а макрофаг, находящийся вне сосудистого русла. Дифференцировка клеток при моноцитопоэзе характеризуется увеличением размеров клетки, приобретением ядром бобовидной формы, снижением базофилии цитоплазмы, превращением моноцита в макрофаг. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. Тромбоцитопоэз. Мегакариобласт - незрелая гигантская клетка костного мозга. Размер 25-40 мкм. Ядро большое неправильной формы, содержит до трех ядрышек. Цитоплазма базофильна, узкой полоской окружает ядро. Мегакариоцит гигантская клетка ККМ 40-45 мкм. При переходе от мегакариобласта к промегакариоциту ядро становится полиплоидным. Форма ядра неправильная бухтообразная. Цитоплазма базофильная содержит азурофильную зернистость. Мегакариоцит "проталкивает" часть своей цитоплазмы (в виде отростков) в щели капилляров красного костного мозга. После этого фрагменты цитоплазмы отделяются в виде пластинок ("тромбоцитов"). Остающаяся ядросодержащая часть мегакариоцита может восстанавливать объём цитоплазмы и образовывать новые тромбоциты.

13Лимфоцито и плазмоцитопоэз. лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:

-костномозговой этап;

· этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;

· этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах. На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген. Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.

· Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

· 1 класс - стволовые клетки;
2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.
Второй этап - этап антиген-независимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов:

· киллеры;

· хелперы;

· супрессоры.

В результате второго этапа образуются рецепторные (афферентные или Т0) Т-лимфоциты - киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Третий этап - этап антиген-зависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена. Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:

· Т-памяти (киллеры);

· Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток. После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ - бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.

14.Классификация, источники развития…. Соединительные ткани — это комплекс тканей мезенхимного происхождения, участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тканей меньшей потребностью в аэробных окислительных процессах. Вместе с кровью и лимфой соединительные ткани объединяются в т.н. «ткани внутренней среды». Как и все ткани, они состоят из клеток и межклеточного вещества. Межклеточное вещество, в свою очередь, состоит из волокон и основного, или аморфного, вещества. Соединительная ткань составляет более половины массы тела человека. Она участвует в формировании стромы органов, прослоек между другими тканями в органах, формирует дерму кожи, скелет. Соединительные ткани формируют и анатомические образования - фасции и капсулы, сухожилия и связки, хрящи и кости. Полифункциональный характер соединительных тканей определяется сложностью их состава и организации.

Функции: Трофическая функция (в широком смысле) связана с регуляцией питания различных тканевых структур, с участием в обмене веществ и поддержанием гомеостаза внутренней среды организма. В обеспечении этой функции главную роль играет основное вещество, через которое осуществляется транспорт воды, солей, молекул питательных веществ. Защитная функция заключается в предохранении организма от механических воздействий и обезвреживании чужеродных веществ, поступающих извне или образующихся внутри организма. Это обеспечивается физической защитой (например, костной тканью), а также фагоцитарной деятельностью макрофагов и иммунокомпетентными клетками, участвующими в реакциях клеточного и гуморального иммунитета. Опорная, или биомеханическая, функция обеспечивается прежде всего коллагеновыми и эластическими волокнами, образующими волокнистые основы всех органов, а также составом и физико-химическими свойствами межклеточного вещества скелетных тканей (например, минерализацией). Чем плотнее межклеточное вещество, тем значительнее опорная, биомеханическая функция; пример - костные ткани. Пластическая функция соединительной ткани выражается в адаптации к меняющимся условиям существования, регенерации, участии в замещении дефектов органов при их повреждении (пример - формирование рубцовой ткани при заживлении ран). Морфогенетическая, или структурообразовательная, функция проявляется в формировании тканевых комплексов и обеспечении общей структурной организации органов (образование капсул, внутриорганных перегородок), а также регулирующем влиянии некоторых ее компонентов на пролиферацию и дифференцировку клеток различных тканей. Классификация: Разновидности соединительной ткани различаются между собой составом и соотношением клеток, волокон, а также физико-химическими свойствами аморфного межклеточного вещества. Соединительные ткани подразделяются на три вида:

1. собственно соединительную ткань,

2. соединительные ткани со специальными свойствами,

3. скелетные ткани.

Собственно соединительная ткань включает:

· рыхлую волокнистую соединительную ткань;

· плотную неоформленную соединительную ткань;

· плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами включают:

· ретикулярную ткань;

· жировые ткани;

· слизистую ткань.

Скелетные ткани включают:

· хрящевые ткани,

· костные ткани,

· цемент и дентин зуба.

Развитие

Различают эмбриональный и постэмбриональный гистогенез соединительных тканей. В процессе эмбрионального гистогенеза мезенхима приобретает черты тканевого строения раньше закладки других тканей. Этот процесс в различных органах и системах происходит неодинаково и зависит от их неодинаковой физиологической значимости на различных этапах эмбриогенеза. В дифференцировке мезенхимы отмечаются топографическая асинхронность как в зародыше, так и во внезародышевых органах, высокие темпы размножения клеток, волокнообразования, перестройка ткани в процессе эмбриогенеза — резорбция путем апоптоза и новообразование ткани. Постэмбриональный гистогенез в нормальных физиологических условиях происходит медленнее и направлен на поддержание тканевого гомеостаза, пролиферацию малодифференцированных клеток и замену ими отмирающих клеток.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...