Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Выбор и обоснование модели данных

 

Большое количество разработанных к настоящему времени разнообразных СУБД связано с существованием различных моделей данных. При проектировании БД мы сталкиваемся с задачей выбора наиболее подходящей модели данных для конкретной предметной области.

Из приведенной схемы (рисунок 3.1) видно, что между объектами существуют связи имеющие тип как «один ко многим», так и «один к одному». Это позволяет осуществить проектирование БД с использованием как реляционной, так и сетевой модели данных. Предпочтение было отдано реляционной модели данных.

БД может быть основана на одной модели или на совокупности нескольких моделей. Любую модель данных можно рассматривать как объект, который характеризуется своими свойствами (параметрами), и над ней, как над объектом, можно производить какие-либо действия.

Любая модель должна обеспечивать такие операции над БД:

- поиск указанного элемента базы;

- переход от одних данных к другим;

- движение по записям;

- поиск записи;

- удаление записи;

Существуют три основных типа моделей данных – реляционная, иерархическая и сетевая.

4.1Иерархическая модель данных

 

В иерархической модели связи между данными описывают с помощью упорядоченного графа (или дерева). Тип является составным. Он включает в себя подтипы («поддеревья»), каждый из которых, в свою очередь, является типом «дерево». Каждый из элементарных типов, включенных в тип «дерево», является простым или составным типом «запись».

Таким образом, ИМД представляет собой упорядоченную совокупность экземпляров типа «дерево» (деревьев), содержащих экземпляры типа «запись» (записи).

В соответствии с определением типа «дерево», можно заключить, что между предками и потомками автоматически поддерживается контроль целостности связей. Основное правило контроля целостности формулируется следующим образом: потомок не может существовать без родителя, а некоторых родителей может не быть потомков. Механизмы поддержки целостности связей между записями различных деревьев отсутствуют.

Данные в базе с приведенной схемой для разрабатываемого ПП могут выглядеть, например, как показано на рисунке 4.1.

 


Рисунок 4.1 – Пример иерархической модели данных для проектируемой БД

 

Корневыми являются сразу два типа Тип и Город, которые в свою очередь имеют свои подчиненные типы. Тип,как и Город имеет подчиненный тип Предприятие, тогда как Предприятие имеет подчиненный тип Цех. Тип Цех, в свою очередь имеет подчиненный тип Изделие. К достоинствам ИМД относят эффективное использование памяти ЭВМ и неплохие показатели времени выполнения основных операций над данными. А именно: поиск указанного экземпляра БД, переход от одного дерева к другому, переход от одной записи к другой внутри дерева, вставка новой записи в указанную позицию, удаление текущей записи. ИМД удобна для работы с иерархически упорядоченной информацией. Недостатком ИМД является ее громоздкость для обработки информации с достаточно сложными логическими связями, а также сложность понимания для обычного пользователя.

 

Сетевая модель данных

 

Сетевая модель позволяет отображать разнообразные взаимосвязи элементов данных в виде произвольного графа, обобщая тем самым ИМД.

СМД состоит из набора записей и набора соответствующих связей. В отличие от ИМД в СМД запись-потомок может иметь произвольное число записей-предков (сводных родителей).

Схема СМД для данной БД показана на рисунке 4.2. Типы связей здесь обозначены надписями на соединяющих типы записей линиях.

 


Рисунок 4.2 - Сетевая модель данных


Анализируя схему, видим, что все элементы связаны друг с другом. Любой элемент может быть выражен через другие элементы. С одной стороны это хорошо, но с другой плохо: на формирование типов связи не накладываются особые ограничения, что приводит при выполнении основных операций над данными к негативным для проектируемой БД ситуациям. Например, в дополнительной таблице появятся записи, которые не имеют родительских записей в основной таблице.

Поэтому недостатком СМД является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения обработки информации в БД обычным пользователем. Кроме того, в СМД ослаблен контроль целостности связей вследствие допустимости установления произвольных связей между записями. Таким образом, для разработанной в пункте 3 схемы объект-отношение данную модель данных применять нежелательно.

Достоинством СМД является возможность эффективной реализации по показателям затрат памяти и оперативности. В сравнении с ИМД сетевая модель предоставляет большие возможности в смысле допустимости образования произвольных связей.

 

Реляционная модель данных

 

Реляционная модель данных некоторой предметной области представляет собой набор отношений (двумерных таблиц), изменяющихся во времени.

В общем случае можно считать, что реляционная БД включает одну или несколько таблиц, объединенных смысловым содержанием, а также процедурами контроля целостности и обработки информации в интересах решения некоторой прикладной задачи. Например, при использовании СУБД Microsoft Access в файле БД наряду с таблицами хранятся и другие объекты базы: запросы, отчеты, формы, макросы и модули.

Достоинство РМД заключается в простоте, понятности и удобстве физической реализации на ЭВМ. С помощью одной таблицы удобно описывать простейший вид связей между данными, а именно деление одного объекта, информация о котором храниться в таблице, на множество подобъектов, каждому из которых соответствует строка или запись таблицы. Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов. Проблемы же эффективности обработки данных этого типа оказались технически вполне разрешимыми.

Основными недостатками реляционной модели являются следующие: отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей.

Переход от схемы объект – отношение к реляционной модели данных осуществляется следующим образом: все объекты схемы объект – отношение это определенные таблицы название полей которых являются свойствами объектов, если отношение имеет свойства то оно также является таблицей в полученной реляционной модели данных

Для проектируемой базы данных реляционная модель представлена на рисунке 4.3.

Рисунок 4.3 - Реляционная модель данных

 

Таким образом, после рассмотрения приведенных выше моделей данных для разработанной в пункте 3 схемы объект-отношение была выбрана РМД, которая проста и понятна для пользователя и отвечает требованиям изучаемого курса.


ОБОСНОВАНИЕ ВЫБОРА СУБД

 

Основы современной информационной технологии составляют базы данных (БД – это структурированная определенным образом совокупность данных, относящихся к конкретной задаче) и системы управления базами данных (СУБД представляет собой комплекс инструментальных средств, программных и языковых, реализующих централизованное управление БД и обеспечивающих доступ к данным (изменения, добавления, удаления, резервного копирования и т.д.), роль которых как единого средства хранения, обработки и доступа к большим объемам информации постоянно возрастает. Быстрое развитие потребностей применений БД выдвигает новые требования к СУБД: естественные и эффективные представления в БД разнообразных отношений между объектами предметных областей (например, пространственно-временных с обеспечением визуализации данных); СУБД должна обеспечивать поиск, модификацию и сохранность данных, а также оперативный доступ (время отклика), защиту целостности данных от аппаратных сбоев и программных ошибок, разграничение прав и защита от несанкционированного доступа, поддержка совместной работы нескольких пользователей с данными.

Этим требованиям отвечают многие современные СУБД, в том числе и Access. МА включает в себя традиционные технологии и возможности реляционных СУБД, предоставляет средства создания базы нормализованных данных и форм для диалоговой работы с ней и удобным графическим интерфейсом. С построением базы нормализованных данных тесно связана разработка и эффективная реализация задач пользователя. Для рения многих задач достаточно использовать такие объекты Access, как формы, запросы,отчеты. Эти объекты легко создаются в диалоговом режиме. Для реализации целостного приложения пользователя в некоторой предметной области возникает необходимость в создании макросов и модуле на языке Visual Basic for Applications (VBA). Механизм обработки событий, возникающих в процессе диалоговой работы с данными, позволяет объединять в приложении пользователя отдельные запросы, формы и отчеты и получать нестандартные рения в практических приложениях пользователя.

Программа Microsoft Access 2000 является реляционной СУБД, которая может функционировать под управлением операционных систем Windows 95/98/Me, Windows NT, Windows XP, и позволяет реализовать поставленную цель. Обеспечивает удобство работы пользователя: имеется возможность создания пользовательских интерфейсов при использовании Visual Basic для приложений, автоматизация разработки различных объектов. Для построения и выполнения запросной функции в Access 2000 очень удобным и доступным является язык запросов по образцу QBE, поддерживаемый мощным интерфейсом пользователя, а также встроенный язык запросов SQL, который является удобным языком управления базами данных.

Программа Microsoft Access 2000 имеет небольшой объем вспомогательного программного обеспечения, вследствие чего предъявляет меньше требований к памяти, чем программы Microsoft Access поздних версий. Кроме того, для проектирования требуемой БД нет необходимости в использовании возможностей более поздних программ Office или других фирм производителей. Вполне достаточно средств, предоставляемых пользователю Microsoft Access 2000.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...