Принцип работы систем со спектральным уплотнением
В простейшем случае каждый лазерный передатчик генерирует сигнал на определенной частоте из частотного плана. Все эти сигналы перед тем, как вводятся в оптическое волокно объединяются мультиплексором (MUX). На приемном конце сигналы аналогично разделяются демультиплексором (DEMUX). Здесь, также как и в SDH сетях, мультиплексор является ключевым элементом. Мультиплексор:
Виды WDM систем Исторически первыми возникли двухволновые WDM системы, работающие на центральных длинах волн из второго и третьего окон прозрачности кварцевого волокна (1310 и 1550 нм). Главным достоинством таких систем является то, что из-за большого спектрального разноса полностью отсутствует влияние каналов друг на друга. Этот способ позволяет либо удвоить скорость передачи по одному оптическому волокну, либо организовать дуплексную связь. Современные WDM системы на основе стандартного частотного плана (ITU-T Rec. G.692) можно подразделить на три группы:
Частотный план для CWDM систем определяется стандартом ITU G.694.2. Область применения технологии CWDM — городские сети с расстоянием до 50 км. Достоинством этого вида WDM систем является низкая (по сравнению с остальными типами) стоимость оборудования вследствие меньших требований к компонентам.
Частотный план для DWDM систем определяется стандартом ITU G.694.1. Область применения — магистральные сети. Этот вид WDM систем предъявляет более высокие требования к компонентам, чем CWDM (ширина спектра источника излучения, температурная стабилизация источника и т. д.). Толчок к бурному развитию DWDM сетей дало появление недорогих и эффективных волоконных эрбиевых усилителей (EDFA), работающих в промежутке от 1525 до 1565 нм (третье окно прозрачности кварцевого волокна). О технологии DWDM Традиционные технологии телекоммуникаций позволяют по одному оптическому волокну передать только один сигнал. Суть же технологии спектрального, или оптического уплотнения заключается в возможности организации множества раздельных сигналов SDH по одному волокну, а, следовательно, многократном увеличении пропускной способности линии связи. В 1980 году технология спектрального уплотнения (Wavelength Division Multiplexing, WDM) была предложена для телекоммуникаций. А еще через пять лет в исследовательском центре компании AT&T была реализована технология плотного спектрального уплотнения (Dense Wavelength Division Multiplexing, DWDM), когда удалось в одном оптическом волокне создать 10 каналов по 2 Gbps.
Передаваемый по технологии DWDM световой поток, состоит из различных длин волн (λ).
Принципиальная схема DWDM достаточно проста. Для того чтобы организовать в одном волокне несколько оптических каналов сигналы SDH «окрашивают», то есть меняют оптическую длину волны для каждого такого сигнала. «Окрашенные» сигналы смешиваются при помощи мультиплексора и передаются в оптическую линию. В конечном пункте происходит обратная операция - «окрашенные» сигналы SDH выделяются из группового сигнала и передаются потребителю. По мере прохождения по оптическому волокну сигнал постепенно затухает. Для того чтобы его усилить, используются оптические усилители. Это позволяет передавать данные на расстояния до 4000 км без перевода оптического сигнала в электрический (для сравнения, в SDH это расстояние не превышает 200 км). Активные компоненты
Преимущества ВОЛП затухание сигнала (0,15 дБ/км в третьем окне прозрачности) позволяет ставить усилители через 40, 80 и 120 километров, в зависимости от класса оконечного оборудования.
Для сращивания оптических кабелей применяются оптические муфты, представляющие собой пластиковые контейнеры, внутри которых расположена сплайс-пластина, удерживающая оптические волокна. Оптический кросс представляет собой устройство, посредством которого осуществляется соединение оптических волокон кабеля со стандартными разъёмами. Кросс выполняется в виде металлической (как правило) коробки, на внешней панели которой находятся оптические разъёмы, а внутри — сплайс-пластина. Соединение разъёмов кросса с волокнами кабеля осуществляется с помощью пигтейлов — коротких кусков оптического волокна с разъёмами. Разъём пигтейла с внутренней стороны кросса соединяется с внешним разъёмом кросса, а другой конец приваривается к волокну оптического кабеля. Сильное электромагнитное излучение способно вносить межканальные помехи в системах HDWDM и приводить к увеличению количества ошибок. Данное явление характерно в системах телематики на железной дороге, где ВОЛП прокладывается на опорах контактной сети в непосредственной близости от контактного провода. Ошибки появляются в моменты переходных процессов, например, при коротком замыкании. Данное явление объясняется эффектами Керра и Фарадея. Магистральная цифровая сеть связи ТТК Волоконно-оптические магистрали, проложенные вдоль всех основных железнодорожных путей, имеет протяженность более 53 000 километров и более 1000 точек выделения ресурса. Карта МЦСС http://ttk.ru/www/nsf/netmap.nsf/rus/ Базовой технологией для построения магистральной первичной сети выбрана SDH-технология (Synchronous Digital Hierarchy), обеспечивающая требуемую масштабируемость (2 - 10 000 Мбит/с), как по пропускной способности, так и по зоне покрытия, позволяющая наиболее активно эксплуатировать оптические каналы. Сеть построена с использованием SDH мультиплексоров в основном производства Lucent Technologies, способных мультиплексировать стандартные сигналы PDH и SDH до уровня 2.5 Гбит/с (STM-16). Переключения в сети происходят за время, не превышающее 50 мс.
Мультиплекси́рование — уплотнение канала, т. е. передача нескольких потоков данных по одному каналу.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|