Уравнение неразрывности установившегося движения жидкости
Стр 1 из 9Следующая ⇒ ГИДРОСТАТИКА 4. Уравнение Эйлера.
Выделим в жидкости некоторый объем. Полная сила, действующая на выделенный объем жидкости, равна интегралу
от давления, взятому по поверхности рассматриваемого объема. Преобразуя его в интеграл по объему, имеем:
Отсюда видно, что на каждый элемент объема dV жидкости действует со стороны окружающей его жидкости сила Мы можем теперь написать уравнение движения элемента объема жидкости, приравняв силу -grad p произведению массы
Стоящая здесь производная
где теперь производная
Таким образом,
или, разделив обе стороны равенства на dt,
Подставляя полученное соотношение в (14), находим:
Это и есть искомое уравнение движения жидкости, установленное впервые Л. Эйлером в 1775 г. Оно называется уравнением Эйлера является одним из основных уравнений гидродинамики.
Если жидкость находится в поле тяжести, то на каждую единицу ее объема действует еще сила
При выводе уравнений движения мы совершенно не учитывал процессов диссипации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными ее участками. Поэтому все излагаемое здесь относится только к таким движениям жидкостей и газов, при которых несущественны процессы теплопроводности и вязкости; о таком движении говорят как о движении идеальной жидкости. Отсутствие теплообмена между отдельными участками жидкости (а также, конечно, и между жидкостью и соприкасающимися с нею окружающими телами) означает, что движение происходит адиабатически, причем адиабатически в каждом из участков жидкости. Таким образом, движение идеальной жидкости следует рассматривать как адиабатическое. При адиабатическом движении энтропия каждого участка жидкости остается постоянной при перемещении последнего в пространстве. Обозначая посредством
где полная производная по времени означает, как и в (14), изменение энтропии заданного перемещающегося участка жидкости. Эту производную можно написать в виде
Это есть общее уравнение, выражающее собой адиабатичность движенияидеальной жидкости. С помощью
Произведение psv представляет собой «плотность потока энтропии». Надо иметь в виду, что обычно уравнение адиабатичности принимает гораздо более простую форму. Если, как это обычно имеет место, в некоторый начальный момент времени энтропия одинакова во всех точках объема жидкости, то она останется везде одинаковой и неизменной со временем и при дальнейшем движении жидкости. В этих случаях можно, следовательно, писать уравнение адиабатичности просто в виде
s = const. (24) что мы и будем обычно делать в дальнейшем. Такое движение называют изэнтропическим. Изэнтропичностью движения можно воспользоваться для того, чтобы представить уравнение движения (19) в несколько ином виде. Для этого воспользуемся известным термодинамическим соотношением
где w – тепловая функция единицы массы жидкости,
и поэтому
Полезно заметить еще одну форму уравнения Эйлера, в котором оно содержит скорость. Воспользовавшись известной формулой векторного анализа
можно написать (29) в виде
Если применить к обеим строкам этого уравнения операцию rot, то мы получим уравнение
содержащее только скорость. К уравнениям движения надо добавить граничные условия, которые должны выполняться на ограничивающих жидкость стенках. Для идеальной жидкости это условие должно выражать собой просто тот факт, что жидкость не может проникнуть за твердую поверхность. Это значит, что на неподвижных стенках должна обращаться в нуль нормальная к поверхности стенки компонента скорости жидкости:
(в общем же случае движущейся поверхности На границе между двумя несмешивающимися жидкостями должны выполняться условие равенства давлений и условие равенства нормальных к поверхности раздела компонент скорости обеих жидкостей (причем каждая из этих скоростей равна скорости нормального перемещения самой поверхности раздела). Как уже было указано, состояние движущейся жидкости определяется пятью величинами: тремя компонентами скорости
1. Основная формула гидростатики. Закон Паскаля. Понятие о напоре
Рассмотрим абсолютный покой несжимаемой жидкости в поле силы тяжести. Уравнение Эйлера (20) принимает вид
Это уравнение описывает механическое равновесие жидкости. Если внешние силы вообще отсутствуют, то уравнение равновесия гласит просто Уравнение (32) непосредственно интегрируется, если плотность жидкости можно считать постоянной вдоль всего объекта, т.е. если не происходит заметного сжатия жидкости под действием внешнего поля. Выберем оси координат, как показано на рис. 2. Поскольку из массовых сил действует только сила тяжести, то
где С – произвольная постоянная. Эта формула выражает гидростатический закон распределения давления, состоящий в том, что в тяжелой (подверженной действию силы тяжести) несжимаемой жидкости давление линейно зависит от вертикальной координаты. Чтобы найти постоянную в уравнении (34), надо использовать какое-нибудь граничное условие. Пусть, например, жидкость покоится в резервуаре (см. рис.2) причем на ее свободной поверхности давление равно р0. Будем это давление называть внешним. Для точек свободной поверхности можем записать
Вычитая это отношение из уравнения (34), находим
или, обозначив через
где величина Из этой формулы ясно, что всякое изменение внешнего давления Если жидкость находится в ненапряженном состоянии, т.е. в ней отсутствуют напряжения сжатия, то В технике весьма часто представляет интерес избыток давления р над атмосферным
Для произвольной точки М, заглубленной на высоту h под свободную поверхность, избыточное давление равно
отсюда видно, что избыточное давление совпадает с весовым, если давление на свободной поверхности равно атмосферному ( Если все члены формулы (37) разделить на величину
Отсюда следует, что каждому давлению р можно поставить в соответствие линейную величину Для трубки П, открытой в атмосферу и называемой пьезометром, получим
откуда
величину называют пьезометрической высотой.
Если давление в точках какого-либо объема жидкости меньше атмосферного (
Соответствующая высота называется вакуумметрической:
На рис. 3 и 4 показаны вакуумметрические высоты для случаев вакуума в капельной жидкости и газе. Давление измеряется в единицах силы, отнесенных к единице площади. В системе СИ единицей давления служит Н/м2 = Па (паскаль), а в технической системе – кгс/см2 = ат (техническая атмосфера). Наряду с этими, как следует из (42) и (44), давление можно, измерять в единицах длины столба данной жидкости. Общей формулой перевода единиц давления в линейные единицы является
При выражении давления высотой столба жидкости чаще всею применяют метры водяного столба, миллиметры ртутного столба и миллиметры спиртового столба. Гидростатический закон распределения давления, выраженный формулой (34), справедлив, очевидно, для любого положения координатной плоскости хОу. Эту плоскость называют плоскостью сравнения, а величину
2. Силы давления жидкости на твердые поверхности
В общем случае воздействие жидкости на твердую поверхность S сводится к сумме элементарных сил Если Суммируя систему сил
называемого силой давления жидкости на поверхность S, и выражение для главного момента
где Рассмотрим несколько частных случаев.
2.1. Равномерное давление на плоскую стенку (р =const., п= const).
В этом случае суммируемые векторы
Линия действия силы Равномерное давление может создаваться покоящимся газом, так как благодаря малой его плотности можно пренебречь действием массовых сил и считать давление одинаковым во всех точках газа. Равномерное давление может создаваться и капельной жидкостью, например, при ее воздействии на горизонтальные площадки, в случае абсолютного покоя или движения сосуда с ускорением вверх или вниз. Величина силы Например, для схемы на рис. 6 давление на дне
2.2. Сила равномерного давления на криволинейную стенку ( В этом случае элементарные силы
,
где
Линия действия силы
а направление определяется направляющими косинусами
Если составляющие не пересекаются в одной точке, система сводится к силе и моменту.
2.3. Сила неравномерного давления на плоскую стенку (
Систему элементарных сил
Величина этой силы
зависит от закона распределения давления Р по площади S. При воздействии на S капельной жидкости эти законы могут быть различными. Их конкретный вид зависит от ориентации площадки и действующих на жидкость массовых сил при абсолютном и относительном покое. Вычислим силу Определим результирующую силу избыточных давлений Величину силы вычислим по формуле (53):
В рассматриваемом случае (см. рис. 8) давление
что при подстановке в формулу (53) дает
Интеграл Поэтому
Формула (55) может быть записана в двух видах
где
Согласно (56) величина силы избыточного давления покоящейся жидкости на плоскую стенку равна произведению площади стенки на избыточное давление в ее центре тяжести. Вектор силы
а линия действия этой силы пересекает стенку в некоторой точке D, называемой центром давления. Для отыскания координат этой точки (
где По правилам составления проекций векторного произведения находим
Учитывая выражения (54) и (55), получим
Более удобные выражения для
где
Вторая из формул (60) показывает, что центр давления расположен ниже центра тяжести на величину Возвращаясь к формуле (57), заметим, что силу давления в рассматриваемом случае можно получить, складывая независимо вычисленные две силы:
2.4. Неравномерное давление на криволинейную твердую поверхность ( Рассмотрим криволинейную поверхность S, находящуюся под воздействием внешнего избыточного давления
Силу весового давления
где
где Аналогично получим
где Таким образом, чтобы вычислить горизонтальную проекцию Проекция силы весового давления на вертикальную ось определится соотношением
где Последний интеграл представляет собой объем тела
Таким образом, вертикальная проекция силы весового давления на криволинейную поверхность равна весу жидкости в объеме тела давления. Величина
а направление линии ее действия – направляющими косинусами
Если Возможны два случая расположения криволинейной поверхности (рис. 10 а и б) под уровнем жидкости. В первом случае жидкость расположена над твердой поверхностью; тело давления заполнено жидкостью и считается положительным, а вертикальная составляющая силы направлена вниз. Во втором случае тело давления не заполнено жидкостью и считается отрицательным; вертикальная сила давления направлена вверх. Если криволинейная поверхность S замкнута и полностью погружена под уровень абсолютно покоящейся жидкости (рис. 11), то воздействие жидкости сводится к одной вертикальной силе. Действительно, для любой горизонтальной оси существуют две противоположно направленные и равные по величине силы, действующие на тело; поэтому результирующая горизонтальных сил равна нулю. Чтобы найти вертикальную силу, проектируем S на свободную поверхность жидкости. Проектирующие вертикали отметят на поверхности тела замкнутую линию l, которая делит поверхность на две части
где Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда: сила А называется архимедовой или гидростатической подъемной силой. Если G – вес тела, то его плавучесть определяется соотношением сил А и G. При В заключение отметим, что сила давления жидкости по криволинейной поверхности в случаях относительного покоя может быть определена общим способом суммирования элементарных сил давления, применительно к заданной форме поверхности и условиям относительного покоя.
ГИДРОДИНАМИКА Основные понятия гидродинамики
Основные элементы движения жидкости. Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t. В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:
Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости. Траектория частицы.Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени
В тот же момент времени t можно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,...... в которых также можно построить векторы скоростей u 2, u 3, и4,… выражающие скорость движения других частиц жидкости в тот же момент. Можно выбрать точки 1, 2, 3, 4... и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока. Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|