Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Свойства коллоидных растворов




Физико-химия дисперсных систем. Коллоидные растворы.

Дисперсные системы

 

«Жизнь – это особая коллоидная система, это особое царство природных вод» (В.И. Вернадский). Дисперсные системы, в частности коллоидные растворы, широко распространены в природе. Почва, глина, воздух, облака, дым, многие минералы – все это коллоидные системы. Дисперсными являются все живые системы. Биологические жидкости, кровь, лимфа, спинномозговая жидкость представляют собой коллоидные системы, в которых белки, холестерин, гликоген, фосфаты, липиды и другие вещества находятся в коллоидном состоянии. В настоящее время особый интерес представляет разработка моделей клеток, живых мембран, нервных волокон, действующих по законам коллоидной химии.

Важнейшие пищевые продукты – хлеб, молоко, масло – коллоидные системы. От величины капелек жира может зависеть скорость их всасывания через стенки пищеварительных органов. Тонко раздробленный жир в молоке и сливочном масле усваивается организмом лучше, чем жир в сплошной массе, например, сало.

С коллоидными системами человек имел дело с незапамятных времен. Изучение этих систем началось в 19 веке. Итальянский ученый Франческо Сельми в 40 гг 19 века обратил внимание на аномальные свойства некоторых растворов, которые по современным представлениям являются типичными коллоидными системами. Эти растворы сильно рассеивают свет; растворенные в них вещества выпадают в осадок от прибавления к ним даже весьма небольших количеств солей, не взаимодействующих с растворенным веществом. Переход вещества в такой раствор и осаждение из него не сопровождается изменением температуры и объема системы, что обычно имеет место при растворении кристаллов. Сельми назвал эти растворы «псевдорастворами». Позднее их стали называть золями.

Англ. уч. Томас Грэм назвал эти системы «коллоидами» (колла по греч. – клей), т.к. думал, что клей является типичным их представителем.

Коллоидные системы – это гетерогенные системы с размером частиц дисперсной фазы от 1 до 100 нм. Дисперсионная среда – это растворитель, в котором распределено вещество. Дисперсная фаза – частицы растворенного вещества.

Коллоидные системы с жидкой дисперсной средой называются золями, в случае водной среды – гидрозолями.

Коллоидные системы получают двумя способами:

1. дисперсионным – основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

2. конденсационным – это укрепление мелких частиц раствора.

Дисперсионный метод основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

Механическое измельчение не получило широкого распространения из-за большой энергоемкости. В лабораторной практике используется ультразвуковое измельчение. При измельчении конкурируют два процесса: диспергирование и агрегирование возникающих частиц. Соотношение скоростей этих процессов зависит от длительности помола, температуры, природы жидкой фазы, присутствия стабилизаторов (чаще всего ПАВ). Подбирая оптимальные условия, можно получить частицы требуемого размера, однако распределение частиц по размерам бывает достаточно широким.

Наиболее интересно самопроизвольное диспергирование твердых тел в жидкой фазе. Подобный процесс может наблюдаться для веществ, имеющих слоистую структуру. В таких структурах имеет место сильное взаимодействие между атомами внутри слоя и слабое Ван-де-Ваальсово взаимодействие между слоями. Например, сульфиды молибдена и вольфрама, имеющие слоистую структуру, самопроизвольно диспергируются в ацетонитриле с образованием бислойных частиц нанометрового размера. При этом жидкая фаза проникает между слоями, увеличивает межслойное расстояние, взаимодействие между слоями ослабевает. Под действием тепловых колебаний происходит отрыв наночастиц с поверхности тв фазы.

Конденсационные методы подразделяются на физические и химические. Формирование наночастиц осущствляется через ряд переходных состояний при образовании промежуточных ансамблей, приводящих к возникновению зародыша новой фазы, спонтанному его росту и появлению физической поверхности раздела фаз. Важно обеспечить высокую скорость образования зародыша и малую скорость его роста.

Физические методы широко используются для получения металлических ульрадисперсных частиц. Эти методы по сути являются дисперсионно-конденсационными. На первой стадии металл диспергируют до атомов при испарении. Затем за счет пересыщения паров происходит конденсация.

Метод молекулярных пучков применяют для получения покрытий толщиной около 10 нм. Исходный материал в камере с диафрагмой нагревают до высоких температур в вакууме. Испарившиеся частицы, проходя через диафрагму, образуют молекулярный пучок. Интенсивность пучка и скорость конденсации частиц на подложке можно менять, варьируя температуру и давление пара над исходным материалом.

Аэрозольный метод заключается в испарении металла в разреженной атмосфере инертного газа при пониженной температуре с последующей конденсацией паров. Этим методом были получены наночастицы Au, Fe, Co, Ni, Ag, Al; их оксидов, нитридов, сульфидов.

Криохимический синтез основан на конденсации атомов металла (или соединений металла) при низкой температуре в инертной матрице.

Химическая конденсация. Коллоидный раствор золота (красного) с размером частиц был получен в 1857 г Фарадеем. Этот золь демонстрируют в Британском музее. Устойчивость его объясняется образованием ДЭС на поверхности раздела твердая фаза-раствор и возникновением электростатической составляющей расклинивающего давления.

Часто синтез наночастиц проводят в растворе при протекании химических реакций. Для получения металлических частиц применяют реакции восстановления. В качестве восстановителя используют алюмо- и борогидриды, гипофосфиты и др. Например, золь золота с размером частиц 7 нм получают восстановлением хлорида золота боргидридом натрия.

Наночастицы солей или оксидов металлов получают в реакциях обмена или гидролиза.

В качестве стабилизаторов используют природные и синтетические ПАВ.

Основной недостаток всех методов – это широкое распределение наночастиц по размерам. Один из методов регулирования размеров наночастиц связан с получением наночастиц в обратных микроэмульсиях. В обратных микроэмульсиях дисперсная фаза – вода, дисперсионная среда – масло. Размер капель воды (или другой полярной жидкости) может меняться в широких пределах в зависимости от условий получения и природы стабилизатора. Капля воды играет роль реактора, в котором образуется новая фаза. Размер образующейся частицы ограничен размерами капли, форма этой частицы повторяет форму капли.

Золь-гелевый метод содержит следующие стадии: 1. приготовление исходного раствора, обычно содержащего алкоксиды металлов М(ОR)n, где М-это кремний, титан, цинк, алюминий, олово, церий и др., R- алкал или арил; 2. образование геля за счет реакций полимеризации; 3. сушка; 4. термообработка. В органических растворителях проводят гидролиз

М(ОR)4+4H2O®M(OH)4+4ROH.

Затем происходит полимеризация и образование геля

mM(OH)n®(MO)2 +2mH2O.

Метод пептизации. Пептизацией называют процесс перехода свежеполученного при коагуляции осадка в золь под действием веществ, называемых пептизаторами. Пептизацию можно вызвать отмыванием коагулята водой от электролита, вызвавшего коагуляцию золя. Пептизация поверхностно-активными веществами связана с тем, что дифильные молекулы ПАВ адсорбируются на частицах осадка, повышая сродство дисперсной фазы к дисперсионной среде. Чаще всего пептизацию вызывают добавлением веществ, которые способны восстановить утраченный заряд коллоидных частиц.

Различают адсорбционную (при промывании осадка, пептизацию осадка электролитом; пептизацию поверхностно-активными веществами) и химическую (диссолюционную) пептизацию. Примером адсорбционной пептизации может служить переход в золь свежеполученного и промытого водой осадка гидроксида железа (III) при добавлении к нему небольших количеств раствора хлорида железа (III), которые сообщают частицам положительный заряд:

{m[Fe(OH)3]nFe3+3(n-x)Cl-}3x+3xCl-

Механизм химической пептизации состоит в том, что при добавлении электролита происходит его взаимодействие с частицами осадка, в результате которого образуется пептизатор. Его ионы адсорбируются на частицах осадка, сообщая им заряд. Примером является переход в золь осадка Fe(OН)3 при добавлении небольших объемов HCl, который сам не является стабилизатором, но химически взаимодействует с поверхностью осадка с образованием собственно пептизатора FeOCl

Fe(OH)3 + HCl = FeOCl + 2H2O

FeOCl→ FeO+ + Cl-

Строение мицеллы образующегося золя может быть представлено следующим образом:

{m[Fe(OH)3]nFeО+(n-x)Cl-}x+xCl-

Пептизация при промывании осадка сводится к удалению из осадка электролита, вызвавщего коагуляцию. При этом толщина ДЭС увеличивается, силы ионно-электростатического отталкивания преобладают над силами межмолекулярного притяжения.

Пептизация осадка электролитом связана со способностью одного из ионов электролита адсорбироваться на частицах, что способствует формированию ДЭС на частицах.

Пептизация поверхностно-активными веществами. Макромолекулы ПАВ адсорбируясь на частицах или придают им заряд (ионогенные ПАВ) или формируют адсорбционно-сольватный барьер, препятствующий слипанию частиц в осадке.

Химическая пептизация происходит, когда добавляемое в систему вещество взаимодействует с веществом осадка. При этом образуется электролит, формирующий ДЭС на поверхности частиц.

Длительное хранение уменьшает способность осадка к пептизации вследствие рекристаллизации (срастания частиц осадка). Происходит старение осадка.

Свойства коллоидных растворов

 

1. Все коллоидные растворы способны рассеивать свет, т.е. опалесцировать. Опалесценция становится особенно заметна, если через коллоидный раствор пропускать пучок сходящихся лучей, поставив между источником света и кюветой с коллоидным раствором линзу. Тогда при наблюдении сбоку виден ярко светящийся конус (конус Тиндаля), что указывает на неоднородность коллоидных растворов.

2. Диффузия частиц в коллоидных растворах протекает весьма медленно.

3. Коллоидные растворы имеют весьма низкое осмотическое давление.

Два последних свойства указывают на относительно крупные по сравнению с молекулами или ионами размеры коллоидных частиц.

4. Коллоидные растворы способны к диализу. Т.е. с помощью полупроницаемой перегородки (мембраны) могут быть отделены от растворенных в них низкомолекулярных веществ, которые проходят через поры мембраны в отличие от крупных коллоидных частиц.

5. В отличие от истинных растворов коллоидные растворы неустойчивы. Коллоидно растворенное вещество способно выделяться (коагулировать) из раствора под влиянием незначительных внешних воздействий, образуя коагулят. Коагулят представляет собой агрегаты из слипшихся первичных частиц. Коагуляцию может вызвать нагревание, вымораживание, интенсивное перемешивание, введение в коллоидные растворы небольших количеств индифферентного электролита, ультразвуковые воздействия. Т.о. коагуляция – это физический, а не химический процесс.

6. Коллоидные растворы обнаруживают явление электрофореза, т.е. перенос коллоидных частиц в электрическом поле к тому или иному электроду, что свидетельствует о наличии заряда у коллоидных частиц.

Коллоидные системы могут быть твердыми, жидкими и газообразными.

Одно и то же вещество в зависимости от условий может образовывать и истинный, и коллоидный раствор. Например, канифоль в спирте образует истинный, а в воде коллоидный раствор. Хлорид натрия в воде образует истинный, а в бензоле – коллоидный раствор.

Коллоидные cистемы можно рассматривать как микрогетерогенные системы с предельной дисперсностью и огромной поверхностью раздела между дисперсной фазой (растворенное вещество) и дисперсионной средой (растворитель).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...