Типы систем теплоснабжения
Стр 1 из 2Следующая ⇒ Классификация и перспективы развития систем теплоснабжения
Интенсификация использования энергетических ресурсов в нашей стране сопровождается ростом теплопотребления промышленных предприятий различных отраслей народного хозяйства, составляющего в настоящее время в общем балансе страны около 56%. Теплоснабжение в ряде случаев имеет суммарные затраты, превышающие 50% общих производственных затрат. Они часто определяются стоимостью не столько используемых энергоресурсов, сколько соответствующих систем теплоснабжения. Системы теплоснабжения создают с учетом вида и параметров теплоносителя, максимального часового расхода теплоты, изменения потребления теплоты во времени (в течение суток, года), а также с учетом способа использования теплоносителя потребителями. В системах теплоснабжения используются следующие источники теплоты: ТЭЦ, КЭС, районные котельные (централизованные системы); групповые (для группы предприятий, жилых кварталов) и индивидуальные котельные; АЭС, АТЭЦ, СЭУ, а также геотермальные источники пара и воды; вторичные•энергоресурсы (особенно на металлургических, стекольных, цементных и других предприятиях, где преобладают высокотемпературные процессы). Теплофикация является особенностью отечественного теплоснабжения. Теплоснабжение от всех ТЭЦ в нашей стране обеспечивает около 40 % тепловой энергии, потребляемой в промышленности и коммунальном хозяйстве. На новых отечественных ТЭЦ устанавливаются теплофикационные турбоагрегаты единичной мощностью до 250 МВт, создаются предпосылки для развития тепловых сетей, в которых будет применяться в качестве теплоносителя перегретая вода с температурой 440 — 470 К. АТЭЦ также способствуют дальнейшему развитию централизованного теплоснабжения (особенно в европейской части страны) с одновременным решением экологических проблем. Сооружение АТЭЦ экономически целесообразно при тепловой нагрузке, превышающей 6 тыс. ГДж/ч. При этих условиях могут использоваться серийные реакторы. Для меньших мощностей целесообразно применение атомных отопительных котельных.
В зависимости от рода теплоносителя системы теплоснабжения делят на водяные (преимущественно для теплоснабжения сезонных потребителей теплоты и горячей воды) и паровые (в основном для технологического теплоснабжения, когда необходим высокотемпературный теплоноситель). Определение вида, параметров и необходимого количества теплоносителя, подаваемого к потребителям теплоты, является, как правило, многовариантной задачей, решаемой в рамках оптимизации структуры и параметров общей схемы предприятия с учетом обобщенных технико-экономических показателей (обычно приведенных затрат), а также санитарных и противопожарных норм. Практика теплоснабжения показала ряд преимуществ воды, как теплоносителя, по сравнению с паром: температура воды в системах теплоснабжения изменяется в широких пределах (300 — 470 К), более полно используется теплота на ТЭЦ, отсутствуют потери конденсата, меньше потери теплоты в сетях, теплоноситель обладает тепло- аккумулирующей способностью. Вместе с тем водяные системы теплоснабжения имеют следующие недостатки: требуется значительный расход электроэнергии на перекачку воды; имеется возможность утечки воды из системы при аварии; большая плотность теплоносителя и жесткая гидравлическая связь между участками системы обусловливают возможность появления механических повреждений системы в случае превышения допустимого давления; температура воды может оказаться ниже заданной по технологическим условиям.
Пар имеет постоянное давление 0,2 — 4 МПа и соответствующую (для насыщенного пара) температуру, а также большую (в несколько раз), по сравнению с водой, удельную энтальпию. При выборе в качестве теплоносителя пара или воды учитывается следующее. При транспортировании пара имеют место большие потери давления и теплоты, поэтому паровые системы целесообразны в радиусе 6—15 км, а водяные системы теплоснабжения имеют радиус действия 30—60 км. Эксплуатация протяженных паропроводов очень сложна (необходимость сбора и перекачки конденсата и др.). Кроме того, паровые системы имеют более высокую удельную стоимость сооружения паропроводов, паровых котлов, коммуникаций и эксплуатационных затрат по сравнению с водяными системами теплоснабжения. Область применения в качестве теплоносителя горячего воздуха (или его смеси с продуктами сгорания топлива) ограничена некоторыми технологическими установками, например, сушильными, а также системами вентиляции и кондиционирования воздуха. Расстояние, на которое целесообразно транспортировать горячий воздух в качестве теплоносителя, не превышает 70—80 м. Для упрощения и снижения затрат на трубопроводы в системах теплоснабжения целесообразно применять один вид теплоносителя.
Типы систем теплоснабжения В народном хозяйстве страны используется значительное количество различных типов систем теплоснабжения. По способу подачи теплоносителя системы теплоснабжения подразделяют на закрытые, в которых теплоноситель не расходуется и не отбирается из сети, а используется только для транспортирования теплоты, и открытые, в которых теплоноситель полностью или частично отбирается из сети потребителями. Закрытые водяные системы характеризуются стабильностью качества теплоносителя, поступающего к потребителю (качество воды как теплоносителя соответствует в этих системах качеству водопроводной воды); простотой санитарного контроля установок горячего водоснабжения и контроля герметичности системы. К недостаткам таких систем относятся сложность оборудования и эксплуатации вводов к потребителям; коррозия труб из-за поступления недеаэрированной водопроводной воды, возможность выпадения накипи в трубах.
В открытых водяных системах теплоснабжения можно применять однотрубные схемы с низкопотенциальными тепловыми ресурсами; они имеют более высокую долговечность оборудования вводов к потребителям. К недостаткам открытых водяных систем следует отнести необходимость увеличения мощности водоподготовительных установок, рассчитываемых на компенсацию расходов воды, отбираемой из системы; нестабильность санитарных показателей воды, усложнение санитарного контроля и контроля герметичности системы. В зависимости от числа трубопроводов (теплопроводов), передающих теплоноситель в одном направлении, различают однотрубные и многотрубные системы теплоснабжения. В частности, водяные системы теплоснабжения делятся на одно-, двух-, трех- и многотрубные, причем по минимальному числу труб могут быть открытая однотрубная система и закрытая двухтрубная.
Рис. 1. Схемы системы теплоснабжения: а – одноступенчатая; б – двухступенчатая; 1 – тепловая сеть; 2 – сетевой насос; 3 – теплофикационный подогреватель; 4 – пиковый котел; 5 – местный тепловой пункт; 6 – центральный тепловой пункт По числу параллельно проложенных паропроводов паровые системы бывают однотрубные и двухтрубные. В первом случае пар при одинаковом давлении к потребителям подается по общему паропроводу, что позволяет осуществлять теплоснабжение, если тепловая нагрузка остается постоянной в течение года и допустимы перерывы в подаче пара. При двухтрубных системах необходимо бесперебойное снабжение абонентов паром различного давления при переменных тепловых нагрузках. По способу обеспечения тепловой энергией системы могут быть одноступенчатыми и многоступенчатыми (рис. 1). В одноступенчатых схемах потребители теплоты присоединяются непосредственно к тепловым сетям / при помощи местных или индивидуальных тепловых пунктов 5. В многоступенчатых схемах между источниками теплоты и потребителями размещают центральные 6 тепловые (или контрольно-распределительные) пункты. Эти пункты предназначены для учета и регулирования расхода теплоты, ее распределения по местным системам потребителей и приготовления теплоносителя с требуемыми параметрами. Они оборудуются подогревателями, насосами, арматурой, контрольно-измерительными приборами. Кроме того, на таких пунктах иногда осуществляются очистка и перекачка конденсата.
Предпочтение отдают схемам с центральными тепловыми пунктами /, обслуживающими группы зданий 5 (рис. 2). При многоступенчатых системах теплоснабжения существенно снижаются затраты на их сооружение, эксплуатацию и обслуживание в связи с уменьшением (по сравнению с одноступенчатыми системами) числа местных подогревателей, насосов, регуляторов температуры и пр. Системы теплоснабжения играют значительную роль в нормальном функционировании предприятий промышленности. Они имеют ряд специфических особенностей. Двухтрубные закрытые водяные системы горячего водоснабжения с водоподогревателем (рис. 3, а) широко распространены при теплоснабжении однородных потребителей (систем отопления, вентиляции, работающих по одинаковым режимам, и др.). К потребителям теплоты вода направляется по подающему трубопроводу 2, она подогревает водопроводную воду в теплообменнике 5 и после охлаждения по обратному трубопроводу 1 поступает на ТЭЦ или в котельную. Подогретая водопроводная вода поступает к потребителям через краны 4 и в аккумулятор 3 подогретой воды, предназначенный для сглаживания колебаний расхода воды. В открытых системах теплоснабжения (рис. 3, б) для горячего водоснабжения непосредственно используется вода, полностью отработанная (деаэрированная, умягченная) на ТЭЦ, в связи с чем системы водоподготовки и контроля усложняются, повышается их стоимость. Вода в двухтрубной системе горячего водоснабжения с циркуляционной линией (от ТЭЦ или котельной) подается по теплопроводу 2, а обратная – по теплопроводу 1. Вода по трубе поступает в смеситель 6, а от него к аккумулятору 3 и через краны 4 к потребителям теплоты. Для исключения возможности попадания воды из подающего трубопровода 2 непосредственно в обратный теплопровод 1 по трубе 8 предусмотрен обратный клапан 7.
Рис. 2. Схема системы теплоснабжения с центральным тепловым пунктом: 1 – центральный тепловой пункт; 2 – неподвижная опора; 3 – тепловая сеть; 4 – П-образный компенсатор; 5 – здание В паровой схеме теплоснабжения с возвратом конденсата (рис. 4) пар от ТЭЦ или котельной поступает по паропроводу 2 к потребителям теплоты 3 и конденсируется. Конденсат через специальное устройство-конденсатоотводчик 4 (обеспечивает пропуск только конденсата) попадает в бак 5, из которого конденсатным насосом 6 возвращается к источнику теплоты по трубе 1. Если в паропроводе давление ниже требуемого технологическими потребителями, то в ряде случаев оказывается эффективным применение компрессора 7.
Конденсат может не возвращаться к источнику теплоты, а использоваться потребителем. Схема тепловой сети в подобных случаях упрощается, однако на ТЭЦ или в котельной возникает дефицит конденсата, для устранения которого необходимы дополнительные затраты. Рис. 3. Двухтрубная водяная система горячего водоснабжения: а – закрытая с подогревателем воды; б – открытая
Рис. 4. Паровая схема теплоснабжения Рис. 5. Схема теплоснабжения с эжектором
Система горячего водоснабжения может иметь струйный подогреватель (рис. 5). Водопроводная вода по магистрали 2 подается к подогревателю 3 и далее в расширительный бак-аккумулятор 4, В этот же бак из паропровода 1 через вентиль 6 поступает пар, что обеспечивает дополнительный подогрев воды при барботаже пара. Из бака 4 вода направляется к потребителям теплоты 5. Тепловые схемы систем теплоснабжения разрабатываются с учетом требований технологии производства, при условии наиболее полного использования теплоты и обеспечения охраны окружающей среды.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|