Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Мелкодисперсный углерод и силикаты в породе равномерно распределены по объему и имеют большую удельную контактную поверхность (до 20 м2/г породы и более).

Футеровка доменной печи

    Для футеровки доменной печи применяют качественный (доменный) шамотный кирпич, высокоглинозёмистый кирпич, углеродистые блоки, иногда карбидокремниевый кирпич. Основу шамота составляют SiО2 и Аl2О3. Для доменных печей стандартом предусмотрено три сорта шамотных изделий с содержанием Аl2О3 соответственно не менее 43, 41 и 39 %; они отличаются повышенной плотностью и прочностью, высокой огнеупорностью (> 1750 °C), низким содержанием Fe2О3 (<1,5 %). Кирпич с более высоким содержанием Аl2О3 применяют для кладки низа печи, а с более низким — для кладки верха. Кроме того, для кладки печей объёмом "1033 м* стандартом предусмотрена марка шамота с меньшим (* 37 %) содержанием Аl2О3, меньшей огнеупорностью (> 1730 °C), прочностью и плотностью. Кирпич может быть длиной 230 мм (нормальный) и 345 мм (полуторный). Применение кирпичей различной длины обеспечивает хорошее переплетение швов кладки. Высокоглинозёмистый муллитовый кирпич, применяемый для кладки лещади, содержит > 63 % Аl2О3 при огнеупорности > 1800 °C. Доменный карбидокремниевый кирпич содержит > 72 % SiC и > 7 % азота и отличается от огнеупоров на основе Аl2О3 и SiO2 заметно большей прочностью и теплопроводностью. Углеродистые блоки изготовляют из кокса и обожжённого антрацита с добавкой в качестве связующего небольшого количества каменноугольного пека. Длина блоков достигает 3-4 м, они прямоугольного сечения 400x400 и 550×550 мм. Блоки в комбинации с высокоглинозёмистым кирпичом больших размеров (400 × 200 × 100 мм) применяют для кладки самой нижней части печи — лещади. Швы между огнеупорными кирпичами заполняют раствором, изготовленным из мертелей, соответствующих классу кирпича. Мертель — это порошок, состоящий из измельчённого шамота и огнеупорной глины. Для ответственных видов кладки применяют мертели с добавкой небольших количеств поверхностно-активных и клеящих веществ (сода, сульфитно-спиртовая барда), что позволяет приготавливать растворы с меньшей влажностью при одновременном повышении их пластичности. Для заполнения швов между углеродистыми блоками применяют углеродистую пасту, состоящую из кокса и смоло-пека. Зазор между блоками допускается не более 0,5 мм для вертикальных и не более 1,5 мм для горизонтальных швов.

 Лещадь доменных печей раннее выкладывали из качественного шамотного кирпича. Однако рост объёма печей и интенсификация плавки вызывали быстрое разрушение такой кладки. Поэтому в настоящее время лещади делают либо цельноуглеродистыми, либо комбинированными из углеродистых и высокоглинозёмистых огнеупоров. Применение углеродистых огнеупоров вызвано тем, что из-за их высокой теплопроводности снижается перегрев и вследствие этого уменьшается разрушение кладки лещади. В комбинированной лещади низ и наружную часть (стакан) выкладывают из углеродистых блоков, а внутреннюю центральную часть из высокоглинозёмистых муллитовых изделий, содержащих более 65 % Аl2О3. Высота лещади составляет ~ 5,6 м; это необходимо, поскольку за многие месяцы эксплуатации печи происходит разрушение кладки жидким чугуном, и в лещади образуется заполненная жидким чугуном полость, могущая достигать фундамента печи. С тем, чтобы уменьшить износ лещади, в современных печах предусматривают воздушное охлаждение её низа. Между низом лещади и пнём фундамента закладывают чугунные плиты толщиной 180 мм; в плиты залиты стальные трубки диаметром 140 мм, в которые вентилятором подают охлаждающий воздух. Снаружи кладку лещади охлаждают гладкими плитовыми холодильниками.

Футеровку горна до уровня фурм выполняют из углеродистых блоков, а в районах фурм и чугунных и шлаковых леток из шамотного (> 42 % Аl2О3) кирпича, поскольку углерод здесь может окисляться кислородом дутья, диоксидом углерода (СO2), а также парами воды из огнеупорных масс. При работе на безводных лёточных массах район чугунных лёток делают из углеродистых блоков. Для предотвращения окисления углеродистых блоков в период задувки печи их защищают кладкой в один ряд из шамотного кирпича. Толщина футеровки у низа горна достигает 1600 мм. Снаружи кладку горна охлаждают гладкими плитовыми холодильниками. Заплечики. Кладку заплечиков чаще всего делают тонкостенной (толщина 230 или 345 мм) из шамотного (> 42 % Аl2О3) кирпича в один ряд, при этом кирпич примыкает к периферийным плитовым холодильникам с залитым кирпичом. Иногда вместо шамота применяют карбидокремниевые кирпичи. Кладка заплечиков быстро изнашивается и вместо неё на поверхности холодильников формируется слой гарнисажа (застывшего шлака и мелких кусков шихты).

 

 

Основные конструктивные элементы печи: 1 – купол; 2 – колошник; 3 – неохлаждаемая часть шахты; 4 – охлаждаемая часть шахты; 5 – распар; 6 – заплечики; 7 – горн; 8 – лещадь; 9 – опорное кольцо (мараторное); 10 – фурмы; 11 – жароупорная часть фундамента; 12 – фундамент из обычного бетона

 

Износ футеровки, основные причины износа футеровки доменной печи в конструктивных элементах кладки. Разрушающее воздействие на футеровку большинства факторов усиливается от колошника к горну, поэтому требования к огнеупорам для разных элементов профиля отличаются: чем ближе элементы к горизонту фурм, тем жестче требования.

 

Факторы, способствующие разрушению кладки в различных зонах доменной печи

 

Футеровка нижней части шахты и заплечиков в наибольшей степени подвержены износу и фактически определяют срок службы доменной печи. Основными причинами износа огнеупоров в этих местах является химическое воздействие шлаков, и особенно в нижней части шахты, паров щелочей, монооксида углерода, цинка, а также значительные колебания температур, способствующие возникновению термических ударов; абразивный износ, создаваемый опускающейся шихтой и жидким чугуном.

Щелочные оксиды содержатся в некоторых железных рудах (до 0,6 %). При эксплуатации доменных печей вследствие различных расстройств их хода возможен неравномерный нагрев отдельных участков кладки нижней части шахты, приводящий к образованию трещин, в которые и проникают пары щелочных соединений и химически взаимодействуют с алюмосиликатными огнеупорными материалами, образуя щелочные алюмосиликаты. В футеровке шахты их может быть до 8-10 %.

Механизм разрушения огнеупорной кладки связан с циркуляцией щелочных металлов и их соединений в печи. В зонах высоких температур при наличии углерода щелочи восстанавливаются, K и Na в виде пара вместе с другими газамиподнимаются вверх и при температуре менее 900oС реагируют с футеровкой, образуя соединения типа, Na2O*Al2O3*nSiO2 плотность которых примерно на 45 % меньше, чем у огнеупоров футеровки. В результате изменения объема прореагировавшей части футеровки между ней и остальной массой возникают напряжения, измененная часть скалывается, а неизмененная часть снова вступает в реакцию. Сколки же опускаются с шихтой в зоны высоких температур, где, как уже было сказано, K и Na восстанавливаются. Таким образом, замыкается цикл их перемещения в печи.

Наиболее действенным способом борьбы с химическим разъеданием огнеупорной кладки является применение тонкостенной футеровки печей с усиленным охлаждением. Повышению стойкости огнеупорной кладки способствует также применение карбидкремниевых огнеупоров. Их щелочеустойчивость в 5-10 раз больше, чем шамотных.

Щелочи путем инфильтрации и диффузии проникают не только в алюмосиликатные изделия, но и в углеродистые блоки лещади и горна вызывая их разбухание. Щелочи в условиях доменной печи разрушительно действуют на углеродистый кирпич уже при 850oС. Атомы щелочных металлов (K, Na) внедряются в плоскости кристаллической решетки графита или углерода. Увеличение объема углерода вызывает механическое повреждение блоков, которое выражается в образовании мелких трещин. Наиболее агрессивным является K2CO3.

Доменная плавка цинкосодержащих руд и агломерата, сопровождается отложением в шахте печи цинкитных настылей. При 650-800oС образуется сплав железа с цинком, проникающий в швы и трещины футеровки печи. Охлаждение кладки ниже 647oС вызывает затвердевание этого сплава, происходящее с увеличением объема. Увеличение объема сплава создает распирающие усилия в кладке, что является причиной образования дополнительных трещин. Многократное повторение этого явления ведет к росту кладки и разрыву кожуха печи. Наиболее подвержена воздействию цинка нижняя часть шахты, но разрыв кожуха происходит обычно в верхней, менее прочной части шахты печи. Максимальное количество цинка (в металлической форме) откладывается в нижней части шахты доменной печи, в верхней части кладки шахты цинк находится в форме кристаллического оксида – цинкита.

 

 

 Способ включает введение в шихту доменных печей в качестве гарнисажеобразующей добавки в виде кускового крупностью 10-100 мм шунгита, содержащего 28-32% углерода и 58-60% кремнезема. Подачу гарнисажеобразующей добавки производят по результатам контроля температуры футеровки на уровне стыка горна и лещади. При положительном отклонении тренда температуры от установленного уровня более чем на 20oС шунгит в количестве 3,0-8,0% от массы кокса загружают в узкое периферийное кольцо, ограниченное радиусами 0,8-1,0 радиуса колошника. Для локальной защиты футеровки горна контролируют ее температуру по секторам горна, определяют сектор с максимальной температурой и при ее отклонении более чем на 25oС от средней температуры по окружности шунгит периодически порциями по 0,15-0,35 порции железорудной части шихты загружают в сектор колошника, расположенный над сектором горна с максимальной температурой футеровки. Применение предложенного технического решения обеспечивает создание защитного гарнисажа на стенках печи и увеличивает длительность кампании печи.

Задачей является создание на футеровке горна доменной печи стабильного прочного гарнисажа, обеспечивающего уменьшение тепловых потерь с охлаждающей водой, уменьшение расхода топлива, повышение срока службы футеровки и продолжительности кампании доменной печи, предотвращение прорыва горна.

Известно техническое решение, обеспечивающее создание защитного гарнисажа на стенах горна доменной печи путем ввода в шихту материала, понижающего вязкость шпака, и поддержания высокой (более 4,0) основности шлака для получения его температуры плавления выше температуры внутренней поверхности футеровки горна.

Такой шлак образует защитный гарнисаж на футеровке горна и предохраняет ее от износа [авт. св. СССР N 98781, МКИ С 21 В 5/02]. Недостатком данного способа является его ограниченные возможности по защите футеровки. Гарнисаж из высокоосновного шлака после снижения основности шлака неизбежно размывается шлаками нормальной основности.

Наиболее близким к предлагаемому техническому решению по свойствам и достигаемым результатам является известный способ создания гарнисажа в доменной печи, включающий загрузку в печь гарнисажеобразующей добавки в виде титансодержащего агломерата, при спекании которого в аглошихту добавляют шлак производства феррованадия, содержащий титан в оксидной и карбонитридной фазах. Недостатком данного технического решения является необходимость спекания специального агломерата, что требует организации отдельной технологической цепи подачи и измельчения шлака производства феррованадия.

Технической задачей является устранение недостатков известных технических решений, создание стабильного гарнисажа на стенках горна доменной печи, уменьшение тепловых потерь с охлаждающей водой, снижение расхода топлива, увеличение срока службы футеровки горна и продолжительности кампании доменной печи.

Решение данной технической задачи достигается тем, что в известном способе защиты футеровки горна доменной печи, включающем загрузку в печь гарнисажеобразующей добавки, в качестве гарнисажеобразующей добавки в печь загружают шунгит фракции 10-100 мм, содержащий 28-32% углерода и 58-60% SiO2, контролируют температуру периферийных углеродистых блоков футеровки на уровне стыка горна и лещади и при положительном отклонении тренда средней температуры футеровки по окружности горна от установленного уровня более чем на 20oС осуществляют загружу шунгита в количестве 3-8% от массы кокса, причем загрузку шунгита производят в узкую периферийную зону колошника, ограниченную радиусами 0,8-1,0 радиуса колошника.

Дополнительно указанная техническая задана решается тем, что контролируют температуру периферийных углеродистых блоков футеровки на уровне стыка горна и лещади по секторам его окружности, определяют сектор с максимальной температурой и при ее отклонении от средней температуры кладки по окружности горна более чем на 25oС шунгит загружают в сектор колошника, расположенный над сектором горна с максимальной температурой футеровки.

Решение технической задачи с высокой эффективностью достигается также тем, что шунгит загружают периодически, отдельными порциями массой 0,15-0,35 от массы порции кокса.

Сущность изобретения заключается в следующем. При вводе в шихту в качестве гарнисажеобразующей добавки шунгита, содержащего углерод и кремнезем в стехиометрическом соотношении для реакции образования из этих компонентов карбида кремния, и загрузке его узкое периферийное кольцо, ограниченное радиусами 0,8-1,0 радиуса колошника, в кусках шунгита при их нагреве до 1400oС и выше по мере опускания в горн печи происходит химическое взаимодействие между углеродом и кремнеземом с образованием карбида кремния. Карбид кремния в кусках шунгита в горне расходуется в реакциях восстановления железа и марганца из первичных шлаков, заменяя при этом углерод кокса Однако вблизи стен горна, где поток первичных шлаков менее интенсивный, чем в районе рудного гребня, часть карбида кремния не успевает ассимилироваться чугуном и шлаком и при контакте с кладкой горна осаждается на ней, образуя устойчивый тугоплавкий гарнисаж, наличие которого препятствует размыванию футеровки горна. Образование гарнисажа на стенках горна снижает теплопотери и способствует увеличению срока его службы и продлению кампании печи. Загрузка шунгита в более широкую периферийную зону или в зону, расположенную ближе к центру печи, уменьшает гарнисажеобразующий эффект от загрузки шунгита в печь.
Контроль тренда средней температуры футеровки на горизонте стыка горна и лещади позволяет своевременно принимать меры по защите футеровки и прекращать загрузку гарнисажеобразующей добавки при ликвидации нежелательного увеличения средней температуры футеровки горна на указанном горизонте. Опыт работы печей показывает, что положительное отклонение тренда средней температуры футеровки на стыке горна и лещади, требующее принятия мер по защите футеровки горна от разгара, составляет 20-25oС.

Контроль температуры футеровки на стыке горна и лещади по окружности горна позволяет определить наиболее изношенный и опасный участок футеровки и защитить его путем секторной загрузки шунгита в сектор с максимальной температурой. По опыту работы допустимое отклонение температуры в секторах от средней температуры по окружности не должно превышать 25-30oС.

Заявляемое количество загружаемого шунгита 3,0-8,0% от массы кокса также получено в результате опыты работы. При количестве загружаемого шунгита, меньшем 3,0% от массы кокса, увеличивается время наращивания гарнисажа в горне, что нежелательно, так как ведет к увеличению потерь тепла. При загрузке шунгита в количестве более 8-0% начинает сказываться увеличение количества шлака, отрицательно влияющее на технико-экономические показатели плавки.

Загрузка шунгита порциями менее чем 15% от массы порции кокса чрезмерно снижает темп загрузки печи. Загрузка шунгита в количестве более 35% от массы порции кокса затрудняет его загрузку в узкий периферийный сегмент (в пределах 0,8-1,0 радиуса колошника).

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. Ha доменной печи объемом 3200 м3 при контроле температуры футеровки на уровне стыка горна и лещади выявили положительное отклонение тренда средней температуры периферийных углеродистых блоков футеровки (по всем термопарам, измеряющим температуру периферийных углеродистых блоков на данном горизонте) от установленного на основе опыта работы печи безопасного уровня средней по окружности температуры блоков 105-110oС на 27oС (в течение 3 суток средняя температура увеличилась от уровня 107oС до уровня 134oС), что свидетельствовало об уменьшении толщины гарнисажа на стенках горна в этой зоне. Для создания на футеровке устойчивого гарнисажа в соответствии с изобретением в шихту ввели шунгит фракции 10-100 мм, содержащий 30% углерода и 59% кремнезема, в количестве 20 кг/т чугуна или 4,5% от массы кокса. Шунгит загружали в узкую кольцевую зону колошника, ограниченную радиусами 0,85-1,0 радиуса колошника. Спустя 8 суток средняя температура футеровки на указанном горизонте снизилась до уровня 106oС. Загрузку шунгита прекратили.

Пример 2. На доменной печи объемом 3200 м3 при контроле температуры футеровки по окружности горна на уровне стыка горна и лещади выявили сектор с максимальной температурой (135oС) футеровки (в районе летки N 4), которая превышала среднюю температуру (106oС) футеровки по окружности на 29oС. Шунгит в количестве 25 кг/т чугуна или около 6% от расхода загружали в сегмент указанного сектора, ограниченный радиусами 0,85-0,95 радиуса колошника. Через четверо суток градиент температур футеровки между секторами горна уменьшился до допустимого и загрузку гарнисажеобразующей добавки прекратили.

Результатом применения предложенного способа защиты футеровки горна доменной печи было снижение температуры охлаждающей воды на холодильниках горна, что свидетельствует об образовании гарнисажа на его стенках. Снижения технико-экономических показателей работы печи не происходило. Наличие стабильного слоя гарнисажа на стенах горна позволило повысить ее форсировку и увеличить производительность печи.

Таким образом, применение предложенного способа создания гарнисажа в доменной печи позволяет уменьшить потери тепла, повысить производительность и увеличить длительность кампании печи.

Формула изобретения

1. Способ защиты футеровки горна доменной печи, включающий загрузку в печь гарнисажеобразующей добавки, отличающийся тем, что в качестве гарнисажеобразующей добавки в печь загружают шунгит фракции 10-1000 мм, содержащий 28-32% углерода и 58-60% SiO2 контролируют температуру периферийных углеродистых блоков футеровки на уровне стыка горна и лещади и, при положительном отклонении тренда средней температуры футеровки по окружности горна от установленного уровня более чем на 20 С, осуществляют загрузку шунгита в количестве 3-8% от массы кокса, причем загрузку шунгита производят в узкую периферийную зону колошника, ограниченную радиусами 0,8-1,0 радиуса колошника.

2. Способ по п.1, отличающийся тем, что контролируют температуру периферийных углеродистых блоков футеровки на уровне стыка горна и лещади по секторам его окружности, определяют сектор с максимальной температурой и при ее отклонении от средней температуры кладки по окружности горна более, чем на 25 С шунгит загружают в сектор колошника, расположенный над сектором горна с максимальной температурой футеровки.


 

 

  Новая технология защиты футеровки горна

 

 

Увеличение работоспособности футеровки горна и лещади доменной печи (ДП) достигается за счет комплексного использования конструктивных, технологических и ремонтных факторов. К числу технологических факторов относятся применение гарнисажеобра-зующих добавок и оптимизация интенсивности плавки.

В качестве гарнисажеобразующих добавок используют в основном титансо держащие добавки, которые подают в печь путем загрузки на колошник или вдувания через воздушные фурмы [1]. Защитный гарнисаж-ный слой на футеровке горна формируется из образующихся в печи титанатов кальция, карбидов и нитридов титана. Вдувание дисперсных титансодержащих материалов (ильменит, рутилит) требует применения дорогостоящего оборудования. Загрузка кусковых титансодержащих материалов (ильменит, доменные шлаки) решает проблему защиты футеровки горна, но сопровождается повышением расхода кокса в связи с увеличением выхода шлака.

Новая технология защиты футеровки горна заключается в загрузке в печь кускового (10-100 мм) природного минерала шунгита. Это комплексное углерод-содержащее сырье, состоящее из аморфного углерода особой разновидности и силикатных минералов, среди которых преобладает кварц. Единственные в мире месторождения шунгитовых горных пород находятся в Карелии. В настоящее время ведется промышленная разработка Загожинского месторождения шунгита, содержащего 57-60% БЮ2 и 28-32% С.

Мелкодисперсный углерод и силикаты в породе равномерно распределены по объему и имеют большую удельную контактную поверхность (до 20 м2/г породы и более).

Благодаря высоким значениям энтальпии и поверхностной энергии аморфного углерода теплота его сгорания - 10,48 МДж/кг С (теплота сгорания углерода кокса - 9,82 МДж/кг С). Энтальпия образования БЮ2 для мелкодисперсного аморфного кремнезема -897 МДж/(кг-моль), а не 911 МДж/(кг-моль), что относится к А-кварцу [2].

Исходя из структуры и термодинамических характеристик компонентов (углерод и кремнезем), шунгит в доменной шихте рассматривается не как высокозольное топливо, а как восстановитель. Считая фактически стехиометрическим (для реакции образования карбида кремния) отношение ЯЮ2 и С в шунгите и учитывая особенности их термодинамических характеристик, есть причина полагать, что внутри ДП углерод и кремний

шунгита взаимодействуют, образуя карбид кремния. Этому способствует относительно низкая температура в начале реакции между кварцем и углеродом шунгита, которая, исходя из термодинамических характеристик, составляет 1626 К или 1354 °С. Температура начала взаимодействия углерода и кварца шунгита с образованием карбида кремния подтверждена результатами лабораторных экспериментов (табл. 1).

Относительно низкая температура начала реакции образования карбида кремния и большая удельная поверхность контакта между углеродом и кварцем в шун-гите (20 м2/г) обеспечивают протекание этой реакции в кусках шунгита, когда они опускаются вместе с коксом от зоны когезии до горна доменной печи. Карбид кремния, образовавшийся в кусках шунгита, может расходоваться в ДП по трем механизмам

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...