Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Общая характеристика последствий радиационных аварий




Долгосрочные последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними.

Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.

28. Мероприятия по защите населения и территорий от возможных радиационных аварий, проводимые заблаговременно (организационные, инженерно-технические, специальные).

Защита населения радиационная - комплекс организационных, инженерно-технических и специальных мероприятий по предупреждению и ослаблению воздействия ионизирующих излучений на жизнь и здоровье людей, сельскохозяйственных животных, состояние растений, окружающей среды.

Защита населения радиационная -комплекс мер, направленных на ослабление или исключение воздействия ионизирующего излучения на население, персонал радиационно-опасных объектов, биологические объекты природной среды, на радиоэлектронное оборудование и оптические системы, а также на предохранение природных и техногенных объектов от загрязнение радиоактивными веществами и удаление этих загрязнений (дезактивацию).

Задачи радиационной защиты: уменьшение вероятности возникновения онкологических заболеваний, генетических нарушений и исключение лучевых поражений органов и тканей. Проводится с использованием технических и медицинских средств защиты, специально оборудованных укрытий и убежищ, а также специальных средств защиты (защитных экранов и др.).

Мероприятия радиационной защиты, как правило, осуществляются заблаговременно и включают:

· разработку и внедрение режимов радиационной безопасности;

· создание и эксплуатацию системы радиационного контроля за обстановкой на территориях атомных электростанций, в зонах наблюдения и санитарно-защитных зонах этих станций;

· разработку планов действий по предупреждению и ликвидации радиационных аварий;

· накопление и содержание в готовности средств индивидуальной защиты, приборов радиационной разведки и дозиметрического контроля, средств йодной профилактики и дезактивации, соответствующих технических средств, материалов и имущества;

· поддержание в готовности к применению защитных сооружений на территории АЭС, противорадиационных укрытий в населенных пунктах вблизи станций;

· осуществление мер по защите продовольствия, пищевого сырья, фуража и источников (запасов) воды от возможного загрязнения радиоактивными веществами;

· подготовку населения к действиям в условиях радиационных аварий, профессиональную подготовку персонала радиационно опасных объектов и личного состава аварийно-спасательных сил;

· обеспечение готовности служб радиационной безопасности радиационно опасных объектов, сил и средств подсистем и звеньев РСЧС, на территории которых находятся радиационно-опасные объекты, к ликвидации последствий радиационных аварий.

29. Мероприятия по защите населения и территорий при радиационной аварии, особенности их проведения.

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению.

Степень опасности радиоактивно загрязненных поверхностей определяется радионуклидным составом загрязнений, плотностью загрязнений, характером загрязненных поверхностей, временем, прошедшим после загрязнения, и некоторыми другими характерными для соответствующего загрязнения причинами.

Наиболее характерные особенности имеет радиоактивное загрязнение вследствие аварий ядерных реакторов различного характера.

В соответствии с удельным весом в составе выбросов биологически наиболее значимых радионуклидов при аварии ядерных реакторов в развитии радиационной обстановки выделяют, как правило, два основных периода: "йодовой опасности", продолжительностью до 2-х месяцев, и "цезиевой опасности", который продолжается многие годы.

В "йодном периоде", кроме внешнего облучения (до 45 % дозы за первый год), основные проблемы связаны с молоком и листовыми овощами – главными "поставщиками" радионуклида йода внутрь организма.

На первом этапе радиационное воздействие на людей складывается из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными облучениями от загрязненных радионуклидами объектов окружающей среды и вдыханием радионуклидов с загрязненным воздухом, на втором этапе – облучением от загрязненных радионуклидами объектов окружающей среды и введением их в организм человека с потребляемой пищей и водой, а в дальнейшем – в основном за счет употребления населением загрязненных продуктов питания. Принято считать, что 85 % суммарной прогнозируемой дозы облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленного потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15 % падает на дозу внешнего облучения.

Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии.

К числу основных мероприятий, способов и средств, обеспечивающих защиту населения от радиационного воздействия при радиационной аварии, относятся: обнаружение факта аварии и оповещение о ней; выявление радиационной обстановки в районе аварии; организация радиационного контроля; установление и поддержание режима радиационной безопасности; проведение, при необходимости, на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта, участников ликвидации последствий аварии; обеспечение населения, персонала аварийного объекта, участников ликвидации последствий аварии необходимыми средствами индивидуальной защиты и использование этих средств; укрытие населения, оставшегося в зоне аварии, в убежищах и противорадиационных укрытиях, обеспечивающих снижение уровня внешнего облучения, а при возможности и защиту органов дыхания от проникновения в них радионуклидов, оказавшихся в атмосферном воздухе; санитарная обработка населения, персонала аварийного объекта, участников ликвидации последствий аварии; дезактивация аварийного объекта, объектов производственного, социального, жилого значения, территории, сельскохозяйственных угодий, транспорта, других технических средств, средств защиты, одежды, имущества, продовольствия и воды; эвакуация или отселение граждан из зон, в которых уровень загрязнения или дозы облучения превышают допустимые для проживания населения.

Локализация и ликвидация источников радиоактивного загрязнения проводится с использованием следующих основных методов:

1. Сбор и локализация высокоактивных, радиоактивных материалов. Особенностью сбора и локализации высокоактивных, радиоактивных материалов (осколки топливных элементов, конструкционных и защитных материалов) является, как правило, то, что точное расположение радиоактивных источников не известно, по территории они распределены случайным образом, при проведении работ возможно неожиданное "появление" источника в результате вскрытия завала или изменения места его расположения. Проведение работ в условиях полей с высокой мощностью экспозиционной дозы (МЭД) гамма-излучения должно планироваться с максимально возможным применением средств механизации.

2. Метод перепахивания грунта. Основной защитный эффект достигается за счет "разбавления" активности по толщине перепаханного слоя грунта. Характеристикой эффективности использования данного способа является коэффициент ослабления К ос, как правило, определяемый по мощности экспозиционной дозы.

3. Метод экранирования. Данный метод используется обычно после снятия загрязненного слоя при высоких остаточных уровнях радиоактивного загрязнения. Характеристикой эффективности также является коэффициент ослабления К ос. На территории промплощадки аварийного объекта может широко применяться экранирование путем засыпания песком, гравием или покрытием бетоном или бетонными плитами.

4. Метод обваловки и гидроизоляции загрязненных участков. Используется обычно как временная мера на первых этапах работ для предотвращения "расползания" загрязнения за счет смыва осадками и для исключения попадания радиоактивных веществ в грунтовые воды. Для сильно заглубленных загрязнений могут использоваться сложные гидротехнические сооружения: "стена в грунте", "фильтрующая завеса". Применение этого метода предполагает большой объем земляных работ с привлечением инженерно-строительной техники.

5. Методы связывания радиоактивных загрязнений вяжущими и пленкообразующими композициями: пылеподавление и химико-биологическое задернение.

Для закрепления (химико-биологического задернения) отдезактивированных и сильно пылящих участков местности нашли применение рецептуры, содержащие в своем составе пылеподавляющие композиции (ССБ, ММ-1, латекс) в качестве основы, минеральные и органические удобрения и смеси семян многолетних злаковых и бобовых трав.

В качестве основных технических средств пылеподавления используются поливомоечные машины, войсковые авторазливочные станции, сельскохозяйственная авиация. Одной из самых эффективных мер радиационной защиты является дезактивация. Наиболее подходящими сроками проведения дезактивации является период поздней фазы аварии. Это определяется временем, необходимым для планирования и организации дезактивационных работ, и сроками наступления относительной стабилизации радиационной обстановки, когда прекращается поступление радиоактивных веществ из источника выброса и заканчивается формирование следа радиоактивного загрязнения.

Основными методами дезактивации отдельных объектов являются:

а) для открытых территорий (грунта):

• снятие и последующее захоронение верхнего загрязненного слоя фунта (механический способ);

• дезактивация методом экранирования;

• очистка методом вакуумирования;

• химические методы дезактивации грунтов (промывка);

• биологические методы дезактивации (естественная дезактивация);

б) для дорог и площадок с твердым покрытием:

• смыв радиоактивных загрязнений струей воды или дезактивирующих растворов (жидкостный способ);

• удаление верхнего слоя специальными средствами или абразивной обработкой;

• дезактивация методом экранирования;

• очистка методом вакуумирования;

• сметание щетками поливомоечных машин (многократно);

в) для участков местности, покрытых лесокустарниковой растительностью:

• лесоповал и засыпка чистым грунтом после опадания кроны;

• срезание кроны с последующим ее сбором и захоронением;

г) для зданий и сооружений:

• обработка дезактивирующими растворами (с щетками и без них);

• обработка высоконапорной струей воды;

• очистка методом вакуумирования;

• замена пористых элементов конструкций;

• снос строений.

Не менее важным мероприятием при ликвидации последствий радиационной аварии является сбор и захоронение (размещение) радиоактивных отходов.

В зависимости от применяемых методов дезактивации локализация отходов может быть достигнута следующими способами:

· локализация образующихся объемов загрязненного грунта и других материалов непосредственно в транспортных средствах при дезактивации методами снятия поверхностного слоя грунта, щебня или всего объема мусора и т.д.;

· локализация отходов, образующихся в ходе дезактивации механически ми (дробеструйными или гидроабразивными) методами, путем отсоса образующейся пыли или пульпы;

· локализация жидких отходов в специальных емкостях-сборниках;

· локализация как дополняющий дезактивацию технологический прием, осуществляемый ручными или механизированными методами при дезактивации, включающий разборку конструкций, а также механические и физико-химические способы.

Органы исполнительной власти субъектов Российской Федерации, местного самоуправления, органы управления ГОЧС на всех уровнях должны знать радиационно-опасные объекты на подведомственной территории, степень их опасности, иметь прогноз возможных последствий аварий на этих объектах, предусмотреть необходимые мероприятия по ликвидации последствий радиационных аварий в планах действий по предупреждению и ликвидации чрезвычайных ситуаций.

30. Химическая авария и фазы ее развития.

Многие страны, и Россия в том числе, сталкиваются с необходимостью ликвидации в кратчайшие сроки последствий крупномасштабных аварийных ситуаций на промышленных предприятиях. Ежегодно в мире случается множество подобных аварий. Если крупномасштабная промышленная авария возникает в индустриальном районе или крупном городе, она неизбежно ведет к значительным разрушениям и потерям и может унести сотни и тысячи человеческих жизней. Результаты анализа данных по химическим авариям показали, что, несмотря на общее снижение числа объектов химической промышленности в последние годы, число аварий не уменьшается, а наоборот, возрастает. В настоящее время синтезировано более 12 миллионов веществ, ежегодно создается 500 тысяч новых соединений, около 80 тысяч из них поступает на рынок, но лишь 1000 веществ подвергается тщательному тестированию.
В коммерческом обороте применяется 100 тыс. токсичных синтетических веществ, около 300 видов опасных веществ транспортируется по железным дорогам. Более 80 % опасных грузов на железных дорогах составляют легковоспламеняющиеся жидкости, химические энергоносители, едкие, и ядовитые вещества. Количество потенциально опасных веществ растет безостановочно, транспортировка опасных грузов и аварийно химически опасных веществ (АХОВ) увеличивает вероятность аварий, пожаров, загрязнения атмосферы, гидросферы, литосферы.

Опасное химическое вещество – химическое вещество, прямое или опосредованное воздействие которого на человека может вызвать острые и хронические заболевания людей или их гибель.

Аварийно химически опасное вещество – опасное химическое вещество, производимое, хранящееся, транспортируемое, применяемое на объектах экономики, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах).

Термин «аварийно химически опасное вещество» используется для того, чтобы выделить наиболее опасные химические соединения, которые в случае аварий на производственных и транспортных объектах легко переходят в атмосферу, вызывая загрязнение (заражение) окружающей среды и массовые поражения людей. Имеется в виду то, что АХОВ в аварийных ситуациях способны «самостоятельно» или при помощи других энергоносителей переходить в атмосферу в виде пара (газа) или тонкодисперсного аэрозоля.

В промышленности наиболее часто применяются такие АХОВ как хлор, аммиак, нитрил акриловой кислоты, цианистый водород (синильная кислота), фосген, сероводород, фтористый водород, метилизоцианат, окись углерода, сероуглерод и другие вещества. Газообразные АХОВ, как правило, хранятся в герметичных стальных емкостях в сжиженном состоянии под давлением собственных паров (600-1200 кПа), а в технологические цеха подаются по трубопроводам.

Некоторые химические соединения, относящиеся к АХОВ (хлор, фосген, синильная кислота, метилизоцианат, хлорпикрин и др.), в прошлом применялись или планировались к применению в качестве боевых отравляющих веществ (ОВ). А это значит, что подразделение многих из рассматриваемых химических соединений на ОВ и АХОВ, в определенной мере, является условным и целый ряд показателей, используемых для оценки поражающих свойств ОВ, может быть применен и для характеристики АХОВ.

Ряд аварий, произошедших за последние годы на предприятиях нефтегазохимического комплекса в разных странах, резко обострил проблему безопасности химических производств и привел к принятию в некоторых странах более жестких мер по контролю за безопасностью и надежностью производства, хранения и транспортировки токсичных химических веществ. Наряду с этим на многих химических предприятиях контроль за соблюдением правил безопасности является недостаточным, отсутствуют планы действий в аварийных условиях, нет подготовленных для такого случая формирований и т.д.

Далее рассмотрим основные используемые при анализе химически опасных объектов термины и понятия.

Химически опасный объект (ХОО) – объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества, при аварии на котором или при разрушении которого может произойти гибель или химическое поражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды (ОПС).

Химическая авария, или химически опасная авария – авария на химически опасном объекте, сопровождающаяся проливом или выбросом опасных химических веществ, способная привести к гибели или химическому заражению людей, продовольствия, пищевого сырья и кормов, сельскохозяйственных животных и растений, или к химическому заражению окружающей природной среды.

В общем виде под химически опасной аварией понимается опасное событие, состоящее в нарушении технологических процессов, на производстве, повреждении (разрушении) трубопроводов, емкостей, хранилищ, транспортных средств, которое приводит к выбросу АХОВ.

К АХОВ относят 34 сильнодействующих ядовитых вещества (согласно перечню сильнодействующих ядовитых веществ, утвержденному в 1988 г.), среди которых: аммиак, сероводород, синильная кислота, фосген, хлор и др., а также 17 опасных химических веществ, среди которых: все боевые отравляющие вещества, диоксин, метиловый спирт, фенол, бензол, ртуть и др. Критериями отнесения вещества к виду АХОВ являются:

· принадлежность опасного химического вещества к 1-му и 2-му классам опасности по значению коэффициента возможности ингаляционного отравления - КВИО (1-й класс: КВИО > 300, 2-й класс: КВИО = 30-300);

· наличие опасного химического вещества на объекте народного хозяйства в количестве, которое превышает пороговое значение, установленное нормативными документами.

Выброс опасного химического вещества – истечение при разгерметизации за короткий промежуток времени из технологических установок, емкостей для хранения или транспортирования опасного химического вещества или продукта в количестве, способном вызвать химическую аварию.

Пролив опасных химических веществ – вытекание при разгерметизации из технологических установок, емкостей для хранения или транспортирования опасного химического вещества или продукта в количестве, способным вызвать химическую аварию.

Зона химического заражения – территория или акватория, в пределах которой распространены или куда привнесены опасные химические вещества в концентрациях или количествах, создающих опасность для жизни и здоровья людей, для сельскохозяйственных животных и растений в течение определенного времени.

Несмотря на предпринимаемые меры для обеспечения промышленной безопасности (многие потенциально опасные производства спроектированы так, что вероятность крупной аварии на них оценивается величиной порядка 10-4), полностью исключить вероятность возникновения химических аварий практически невозможно.

Классификация химических аварий по источникам возникновения:

· аварии на хранилищах АХОВ;

· аварии при ведении технологических процессов (возможные источники заражения: технологические емкости и реакционная аппатратуа)

· аварии при транспортировке АХОВ

Для любой аварийной ситуации характерны три стадии существования опасностей: возникновение, развитие и спад опасности. На химически опасном объекте в разгар аварии могут действовать, как правило, несколько поражающих факторов – пожар, взрывы, химическое заражение местности и воздуха и др. Действие АХОВ через органы дыхания чаще, чем через другие пути воздействия, приводит к поражению людей.

В химически опасных авариях выделяют 4 фазы динамического существования:

· инициирование аварии

· развитие аварии

· выход последствий аварий за пределы

· локализация и ликвидация последствий

Первая фаза «Инициирование аварии» обусловлена накоплением отклонений параметров процессов от их нормальных (требуемых) значений или неконтролируемыми случайностями.

Вторая фаза оказывает определяющее воздействие на масштабы последствия аварии, так как от особенностей попадания АХОВ в атмосферу зависят дальность распространения газовой волны и время поражающего действия.

В свою очередь, особенности попадания АХОВ в атмосферу определяются условиями его содержания в возможном источнике заражения и характером повреждения последнего. Возникающие при выбросах АХОВ в атмосферу типовые аварийные ситуации представлены в табл. 6.1.

Несмотря на то, что в настоящее время размеры единичных мощностей ХТС (технологических установок) и, следовательно, объемов складов и хранилищ АХОВ, объемов таких веществ в технологической аппаратуре и транспортных средствах постоянно снижается, количество аварий с выбросом АХОВ увеличивается, что обусловливает увеличение масштабов возможного ущерба, усложнение складывающейся обстановки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...