Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формирование хеджированного портфеля




Допустим, инвестор в момент 0 хочет сформировать такой хеджированный портфель, чтобы в момент 1 доходы от него были равны доходам от опциона покупателя. Инвестор:

1. купит А обыкновенных акций по цене S за акцию.

2. купит облигации на сумму В долларов.

Стоимость облигаций через один период будет равна rB. Ставка% равна r‑1.

Нужно найти такие В и А, чтобы доход от портфеля был таким же как от опциона покупателя (рис.).Доходы от опциона зависят от цены акций. Если доходы от хеджированного портфеля и от опциона одинаковы, а цена акции растёт, будет выполняться следующее равенство:

А uS + rB = Cu (1);


Рис. Денежные потоки от инвестиций в акции и облигации и от покупки опциона

 

а) купить АS акций; б) инвестировать сумму В в в) купить облигации (В отрицательно, опцион на если привлекается заёмный покупку капитал); обыкновенных акций.

Если доходы от хеджированного портфеля и от опциона одинаковы, а цена акции падает, будет выполняться равенство:

AdS + rB = Cd (2);

 

Значения Cu и Cd в момент 1, когда закончится срок опциона известны, так как известны характеристики опциона и стоимость обыкновенных акций. Таким образом, имеем два уравнения с двумя неизвестными. Вычитая уравнение AdS+rB=Cd из AuS+rB=Cu, получим решение относительно u:

 

As (u-d)=Cu-Cd

 

Преобразуя, получим:

A =(Cu - Cd)\ S (u - d) (3);

 

Величина А называется коэффициентом хеджирования, она определяет, сколько обыкновенных акций нужно купить, чтобы получить такой же денежный доход, как и от покупки одного опциона.

Решаем уравнения 1 и 2 относительно В:

B= (uCd – dCu)\(u-d)*r (4)


Портфель, состоящий из одного опциона покупателя, в любом случае принесёт такой же доход, что и портфель из В облигаций и А обыкновенных акций. Поэтому в состоянии равновесия первоначальная стоимость обоих портфелей должна быть одинаковой. Для этого должно выполняться равенство:

C = AS + B (5).

 

Стоимость опциона покупателя С должна быть равна AS+B, иначе есть возможность получить на операциях с опционом спекулятивную прибыль.

Для того, чтобы рассчитать стоимость опциона покупателя не было необходимости знать вероятности исходов u и d. Вероятности могут повлиять на стоимость опциона покупателя, но только косвенно. Если вероятность u велика, цена акции S, несомненно, выросла бы, и из уравнения (5) можно увидеть, что рост S увеличивает стоимость опциона С. Модель не показывает, как оценивать акции. Она показывает, как оценивать опционы покупателя, зная цену акции. Другими словами, цена опциона покупателя зависит от цены акции.

Кроме того, модель не требует, чтобы инвесторы договаривались о вероятности исхода u. Оптимистично настроенные по отношению к u инвесторы, возможно захотят обладать большим количеством акций (или опционов покупателя). Но при заданной цене акции, они придут к соглашению относительно цены опциона. Покажем, как только что описанная модель используется для формирования хеджированного портфеля и определения стоимости опциона покупателя при заданных условиях.

Пример.

S = 100 $; u = 1,5; d = 1,0; K = 120 $; rf = 0,10; r =1,10;

Cu = max (uS – K, 0) = max (150 $. – 120 $, 0) = 30 $;

Cd = max (dS – K, 0) = max (100 $ – 120 $, 0) = max (-20 $) = 0.

Срок опциона закончится через один период. Сейчас цена акций равна 100 $, а через один период цена будет или 150 $, или 100 $

uS = 1,5* 100 долл. = 150 $;

dS = 1,0*100 долл. = 100 $;

Если цена исполнения опциона 120 $, то стоимость опциона в конце периода будет либо 30 $(при цене акций 150 $), либо 0 (при цене акций 100 $). Чтобы найти А и В, воспользуемся уравнениями (3) и (4):

Так как (u-d) = 0.5 и Cu – Cd = 30 $, то

A = (Cu – Cd)\(u – d)*S = 30 $ /0.5*100 $;

B= (uCd – dCu)\(u-d)*r = (-1)*30 $/0.5 (1.1) = (-60)$/1.1 = (-54.55)$;

Отрицательное значение B показывает, что следует использовать заёмный капитал. На каждый опцион следует купить 0.6 обыкновенных акций на сумму 0.6*100 $ = 60 $ и взять заём 60 $/(1.1) = 54.55 $(в период 1 в счёт погашения долга будет уплачено 60 $).

Если произойдёт событие u, то стоимость портфеля будет:

 

Обыкновенные акции Облигации: rB Итого
100 долл.*0.6 = 60 $ -60 $ 0 $

 

Доход по опциону будет либо 30 $, либо 0 $. Первоначальная стоимость опциона равна:

C = AS + B = 60 $ – 54.55 $ = 5.45 $.

0.6 акций стоят 60 $, из них 54.55 $ взяты в долг под 10%.

Вне зависимости от того, какое из двух событий произойдёт, инвестор в период 1 получит такую же сумму, как если бы он купил опцион покупателя.

Если опцион продаётся на рынке по цене, отличной от 5.45 $, инвестор, знающий как формировать хеджированный портфель, может без всякого риска получить прибыль на арбитражных сделках. Например, пусть опцион продаётся за 10 $. Так как цена опциона завышена, инвестор будет заключать арбитражные сделки, продавая опционы покупателя. Человек, продающий опционы покупателя, обязан купить акцию или иметь её – ведь акции нужно будет отдать. Чтобы гарантировать себе прибыль, арбитражер купит 0.6 обыкновенных акций и возьмёт в долг 54.55 $ в момент продажи опциона покупателя. В период 0 денежные потоки будут такими:

(– 60)$ + 54.55 $ + 10 $ = 4.55 $

В период 1 арбитражер продаст акции, вернёт долг, и, если опцион исполнен, купит акцию на рынке и отдаст её в обмен на цену исполнения. Если цена акции поднимется, то опцион будет исполнен, и денежный поток в период 1 будет таковым:

1.5*60 долл. – 1.1*54.55 долл. – 1.5*100 долл. + 120 долл. = 90 $ – 60 $ – 150 $ + 120 $ = 0.

Если цена акции составит 100 $, опцион покупателя не будет исполнен и арбитражер продаст акцию и использует полученные деньги на уплату долга. В этом случае денежные потоки в период 1 будут: 60 $ – 60 $ = 0

Следовательно, если цена опциона завышена, то арбитражер может продавать опционы покупателя и без всякого риска получать гарантированную прибыль, равную разнице между рыночной ценой и чистыми расходами на покупку хеджированного рыночного портфеля. Если цена опциона меньше расходов на покупку хеджированного рыночного портфеля, то арбитражер заключит сделки, противоположные только что описанным: продаст 0.6 обыкновенных акций заджированного рыночного портфеля, то арбитражер заключит суделки противоположные только что описанным 60$, выпустит облигации на сумму 54.55$ под 10% купит опцион покупателя. Денежные потоки за период 0 будут равны разнице между истинной стоимостью опциона покупателя и его рыночной ценой, а денежные потоки за период 1 сведутся к нулю.

Короче говоря, у арбитражера есть возможность получить гарантированную прибыль, если только цена опциона отличается от чистых расходов на покупку аналогичного хеджированного портфеля. Арбитражеры продают опционы покупателя, когда цена этих опционов завышена, и покупают их, когда их цена занижена. Тем самым они не дают рыночной цене опциона отклоняться от рыночной стоимости эквивалентного хеджированного портфеля. Такой подход к оценке опциона покупателя известен под названием арбитражной оценки. Если бы мы исследовали случай с несколькими периодами, портфель (акции, облигации и опционы) нужно было бы скорректировать: в нём должно быть столько ценных бумаг каждого вида, чтобы портфель всегда был хеджированным. Если периоды времени сокращаются, и операции совершаются непрерывно, то мы приходим к модели оценки опционов Блека – Шоулза.

 

Модель Блека – Шоулза

 

Модель Блека – Шоулза коренным образом изменила подход к анализу опционов; она позволила отойти от субъективно – интуитивных оценок при определении цены опционов и подвести под неё теоретическую базу.

Блек и Шоулз первыми осознали возможность интерпретировать акцию как опцион на отдельно взятую фирму. По истечении срока кредита, если стоимость фирмы будет меньше номинальной стоимости долга, акционеры имеют право, но не обязательство, погасить кредит. В результате стало возможным использовать данный метод для оценки акций, что важно, если они не торгуются. Блек и Шоулз сделали ряд исходных предположений, над проверкой значимости которых работают многие исследователи. Среди этих постулатов такие:

1. Можно оценить колеблемость (среднеквадратическое отклонение доходности акций(актива));

2. Существует постоянная во времени ставка процента по безрисковым вложениям;

3. Расходов на заключение сделки нет; при заключении сделок без покрытия на срок (сделок с короткой позицией) продавец получает деньги сразу;

4. Налоги не имеют значения;

5. Дивидендов нет;

6. Цена обыкновенной акции случайная величина; цена на период Т имеет логарифмически нормальное распределение.

В основе формулы Блека–Шоулза лежит предположение, что существует такая экономическая среда, в которой арбитражеры могут с точностью воспроизвести будущие доходы по опциону покупателя с помощью хеджированного портфеля, состоящего из акций и облигаций. Они рассчитали, какой должна быть стоимость опциона покупателя, чтобы гарантированная прибыль от арбитражных сделок была невозможной. Модель Блека – Шоулза оценивает так называемую справедливую стоимость опциона. Учитывая историю акции(актива) и вычисляя вероятность будущей цены опциона, можно рассчитать текущее справедливое значение его цены. Модель определяет возможное будущее значение цены базисного актива. Придавая вероятности будущим значениям цены базисного актива, модель позволяет включить эти вероятности в цену.

Модель предполагает, что будущие цены акции(актива) подчиняются логарифмически нормальному (натуральный логарифм этой величины имеет нормальное распределение) распределению вероятности. Волантильность или среднеквадратическое отклонение доходности акции(актива) вычисляется на основе исторических данных. Чем большей волантильностью характеризуется акция, тем выше вероятность того, что в момент окончания действия опциона цена будет сильно отличаться от сегодняшней. Чтобы компенсировать подобный риск, продавец должен получить больше за опцион на такую акцию, а покупатель больше заплатить за возможность использования опциона.

Вычисленная справедливая рыночная стоимость опциона может как совпадать, так и не совпадать с текущим значением цены.

Концептуально модель Блека – Шоулза очень проста:

Цена опциона колл = ожидаемая будущая цена за акцию – ожидаемая стоимость исполнения опциона.

Однако практическую ценность имеют поправки, учёт которых может существенно изменить цену. Блек и Шоулз дополнили это уравнение следующими поправками:

1. на вероятность разброса будущей цены акции(актива);

2. на чистое значение стоимости исполнения;

3. на вероятность того, что цена исполнения может быть выше, чем цена базисного актива;

4. на тот факт, что часть любого платежа может быть получена по безрисковой ставке.

Стоимость опциона по формуле Блека – Шоулза:

C = SN (h 1) – (r (- T) (степень)) KN (h 1 – o T),

 

h1= (ln (S\K) +(ln r +(o 2 (степень)\2)) T)\ o T,

С – теоретическая цена опциона «колл», которая также называется премией;

N(h1) – накопленная вероятность (функция распределения) при нормальном распределении для h1;

K – цена исполнения;

S – сегодняшняя цена акции;

r=1+rf (степень) – ставка процента по безрисковым вложениям;

T – срок до окончания действия опциона;

о – среднеквадратическое отклонение доходности обыкновенных акций(актива) или изменчивость(волантильность) доходности базисного актива.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...