Электромагнитная совместимость (межсистемные помехи, внутрисистемные помехи, экранирование проводников)
⇐ ПредыдущаяСтр 2 из 2 Помеха - непредусмотренный при проектировании РЭА сигнал, способный нарушить ее функционирование. Внутренние помехи возникают внутри работающей аппаратуры. Источниками электрических помех являются, в основном, блоки питания и токоразводящие цепи. Источниками магнитных помех являются трансформаторы и дроссели. При наличии пульсаций выходного напряжения вторичных источников электропитания цепи распределения электроэнергии, тактирующие и синхронизирующие цепи следует рассматривать как источники электромагнитных помех. Значительные помехи создают электромагниты, электрические двигатели, реле и электромеханические устройства. Внутренними помехами являются также помехи от рассогласования волновых сопротивлений линий связи с входными и выходными сопротивлениями модулей, которые эти линии соединяют, а также помехи, возникающие по земляным шинам. Под внешними помехами понимаются помехи сети электропитания, сварочных аппаратов, щеточных двигателей, передающей радиоэлектронной аппаратурой и пр., а также помехи, вызванные разрядами статического электричества и атмосферными явлениями. Действие на аппаратуру внешних помех по физической природе аналогично действию внутренних помех. Приемниками помех являются высокочувствительные усилители, линии связи, магнитные элементы. Помехи проникают в аппаратуру непосредственно по проводам или проводникам (гальваническая помеха), через электрическое (емкостная помеха), магнитное (индуктивная помеха) или электромагнитное поле. Многочисленные проводники, входящие в состав любой аппаратуры, можно рассматривать как приемопередающие антенные устройства, принимающие или излучающие электромагнитные поля.
Основные причины, вызывающие искажения сигналов при прохождении их по цепям РЭА, следующие: а) отражения от несогласованных нагрузок и от различных неоднородностей в линиях связи; б) ухудшение фронтов и задержки, возникающие при включении нагрузок с реактивными составляющими; в) задержки в линии, вызванные конечной скоростью распространения сигнала; г) перекрестные помехи; д) паразитная связь между элементами через цепи питания и заземления; е) наводки от внешних электромагнитных полей.
Применение экранов в РЭА. Экраны включаются в конструкцию для ослабления нежелательного возмущающего поля в некотором ограниченном объеме до приемлемого уровня или для локализации, где это возможно, действие источника полей. Возможны два варианта защиты. В первом случае экранируемая аппаратура размещается внутри экрана, а источник помех вне его, во втором - экранируется источник помех, а защищаемая от помех аппаратура располагается вне экрана. Первый вариант обычно используют при защите от внешних помех, второй - внутренних. В РЭА функции экранов чаще всего выполняют кожухи, панели и крышки приборов блоков и стоек, По принципу действия различают электростатическое, магнитостатическое и электромагнитное экранирования. Электростатическое экранирование применяется при внутренних помехах с одних функциональных модулей аппаратуры на другие. При введении между модулями заземленного экрана высокой проводимости источник помех окажется подсоединенным на землю через паразитную емкость, желательно как можно большую, а входы и выходы схем - на соответствующие паразитные емкости (обычно много меньшие), что должно учитываться схемотехником при оценке параметров и характеристик схемы. Экранирующий эффект заключается в шунтировании на корпус большей части паразитной емкости, имеющейся между источником и приемником наводок.
В качестве экранов служат детали шасси и каркасов, обшивки стоек, панелей, субблоков, кассет, специальные листовые металлические прокладки на монтажной стороне плат, блоков, субблоков, и т. д. С целью улучшения экранировки особо чувствительных к помехам цепей (например, для передачи синхроимпульсов) на обеих сторонах печатных плат сигнальные и заземленные экранные проводники чередуют таким образом, чтобы против сигнальной линии, проходящей с одной стороны платы, всегда располагалась заземленная линия с другой стороны платы. При этом каждая сигнальная линия оказывается окруженной тремя заземленными линиями, в результате чего достигается не только эффективная экранировка сигнальной линии от внешних помех, но и для полезного сигнала обеспечивается подобная волноводу цепь от источника до нагрузки. Экранирование применяется также для проводов входной и выходной линий, при этом чаще всего оказывается достаточным экранировать только входную цепь. Для устранения гальванической помехи по земле экраны проводов необходимо заземлять в одной точке. При выполнении линий передачи печатным способом вводятся экранирующие трассы, коммутируемые с шиной нулевого потенциала и выполняющие функции экранов проводов.
Магнитостатическое экранирование. Задача экранирования сводится к уменьшению или полному устранению индуктивной связи между источником и приемником помехи. Если магнитный поток пересекает контур, образуемый проводником, то в контуре наводится помеха. Для полного устранения или уменьшения напряжения помехи, наводимой в контуре, необходимо: - поместить контур в экран; - ориентировать его так, чтобы магнитные силовые линии поля не пересекали контур, а проходили вдоль него; - уменьшить площадь контура. Магнитные экраны выполняют как из ферромагнитных, так и немагнитных металлов. Ферромагнитные материалы с большой магнитной проницаемостью обладают малым магнитным сопротивлением, в результате чего линии магнитного поля будут шунтированы материалом экрана, и пространство внутри экрана не будет подвергаться воздействию магнитного поля. Магнитное экранирование тем эффективнее, чем больше магнитная проницаемость экрана и толще экран. При выборе материала экрана необходимо помнить, что магнитная проницаемость с увеличением частоты поля уменьшается, и это сказывается на эффективности экранирования. Ферромагнитные материалы эффективно защищают аппаратуру в диапазоне частот от 0 до 10 кГц.
Действие экрана из немагнитного металла основано на вытеснении внешнего магнитного поля из внутреннего пространства прибора материалом экрана. Внешнее переменное магнитное поле создает индукционные вихревые токи в экране, магнитное поле которых направлено навстречу внешнему полю внутри экрана. У экранов из немагнитных металлов эффективность экранирования повышается с увеличением толщины и проводимости материала экрана. Магнитное поле частотой выше 10 МГц достаточно надежно экранируется, если на диэлектрический кожух наносится медное или серебряное покрытие толщиной не более 100 мкм. Толщина немагнитного экрана может в несколько раз превысить толщину ферромагнитного, обеспечивающего на фиксированной частоте одинаковое ослабление. Использование ферромагнитного материала позволяет значительно снизить массу экрана. При экранировании магнитного поля заземление экрана не обязательно, поскольку оно не влияет на качество экранирования. Однако перед тем как конструировать экран, необходимо предусмотреть все меры, чтобы избавиться от помехи более простым и дешевым способом. Например, уменьшение площади контура, пересекаемого силовыми линиями магнитного поля, получают укладыванием сигнальных проводников непосредственно по заземленным монтажным панелям модулей. Электромагнитное экранирование охватывает диапазон частот от 1 кГц до 1 ГГц. Действие электромагнитного экрана основано на отражении электромагнитной энергии на границах диэлектрик-экран и ее затухании в толще экрана. Затухание в экране объясняется тепловыми потерями на вихревые токи в материале экрана, отражение - несоответствием волновых параметров материала экрана и окружающей среды. Для нижней границы частотного диапазона первостепенное значение приобретает отражение, для верхней границы - поглощение электромагнитной энергии.
Электромагнитное экранирование выполняется как немагнитными, так и магнитными металлами. Немагнитные металлы высокой проводимости можно эффективно использовать в низкочастотной части спектра, ферромагнитные материалы высокой магнитной проницаемости и электрической проводимости - во всем частотном диапазоне электромагнитного поля. Толщина экрана должна быть по возможности наибольшей. Для частот менее 1 МГц хорошие результаты дают медные и алюминиевые экраны, а при частотах выше 1 МГц - экраны из стали. Однако наилучшие результаты можно получить при применении многослойных экранов - последовательно чередующихся слоев магнитных и немагнитных металлов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|