Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Изменчивость, ее формы. Мутагенез. Антимутагенные механизмы.

Лекция № 5

Изменчивость – общее свойство живых организмов приобретать новые или утрачивать прежние признаки.

Изменчивость отражает взаимосвязь организма с внешней средой, обеспечивает способность адаптироваться и существовать в различных жизненных формах, порождать многообразие живого.

Различают фенотипическую (ненаследственную) и генотипическую (наследственную) изменчивость.

Слайд № 1 классификация изменчивости.

 

Изменчивость и наследственность тесно взаимосвязаны. Явление наследственности базируется на способности генов к точной ауторепродукции, что обеспечивает в поколении организмов наличие материальной базы генетической информации и в результате этого воспроизведение сходных форм обмена веществ. При этом материал для синтеза генов черпается извне, в конечном счете из пищи. Завися от внешней среды, от предшественников, которые синтезируются в клетке, гены, как и все в мире, изменяются. Эти изменения получили название мутаций. Термин «мутации» принадлежит Де Фризу.

Мутации – это внезапные скачкообразные непредсказуемые и дискретные изменения наследственного материала.

Мутации, будучи новыми молекулярными состояниями генов, столь же стойки, как и гены, из которых они возникают. Путем ауторепродукции мутации передаются потомкам в бесчисленном ряду клеточных поколений.

Место мутации в любой точке гена называют сайтом. Разные сайты могут быть объединены в одном гене и разъединены. Сущность локальных внутригенных изменений может быть сведена к четырем типам: 1) замена пар оснований в молекуле ДНК; 2) делеция одной пары или группы оснований; 3) вставка одной пары или группы пар оснований; 4) перестановка положений нуклеотидов внутри гена.

Мутации, связанные с заменой пары комплементарных нуклеотидов двухцепочной молекулы ДНК на другую пару нуклеотидов, приводят к изменению структуры отдельных триплетов кодирующей нити этой молекулы.

слайд № 2. Замена одной пары нуклеотидов на другую может так изменить смысл соответствующего триплета в 3I – 5I – нити ДНК, что он приобретает способность кодировать другую аминокислоту. Такие мутации часто называют миссенс-мутациями (от англ. miss – потеря, отсутствие + sens – смысл, значение). Например, триплет Ц Г Т кодирующей нити ДНК, определяет в полипептиде аминокислоту аланин. Если этот триплет заменяется триплетом Ц А Т, то вместо аланина будет другая аминокислота – валин.

В отдельных случаях при замене нуклеотидов возникают мутации, называемые нонсенс-мутации (от англ. nonsense - бессмыслица), при которых обычный кодон той или иной аминокислоты превращается в стоп-кодон (например, замена триплета ЦАА в молекуле мРНК, кодирующего глицин, на стоп-триплет УАА). Такая мутация вызывает преждевременное прекращение (терминацию) процесса транскрипции информации соответствующего гена.

Принципиально иной характер имеют генные мутации, приводящие к сдвигу рамки считывания генетической информации. Они возникают при включении (вставке, инсерции) либо выпадении (делеции) одной или нескольких пар нуклеотидов. Слайд № 3. (вставка)

При этом изменяется структура всех триплетов исходной нуклеотидной последовательности кодирующей нити ДНК, начиная с точки, в которой произошло нарушение, и заканчивая стоп-кодоном на 5I – конце такой последовательности. Следовательно, нарушится и вся аминокислотная последовательность кодируемого полипептида, т.е. в клетке будет синтезироваться “бесмысленный” белок.

Таким образом изменения в молекулярной структуре гена ведут к новым формам списывания с него генетической информации, нужной для протекания биохимических процессов в клетке, и в конечном итоге приводят к появлению новых свойств в клетке и в организме в целом.

Громадное количество мутаций открыто у человека. Они касаются его морфологии, биохимии, склонностей поведения, умственных способностей, некоторых специальных форм одаренности (музыкальный талант) и т.д. Основой всех этих явлений служат изменения в материальных основах генетической информации. Мутации меняют элементы этой информации, поэтому любое проявление жизни может быть изменено под действием мутаций. Именно это их свойство и делает мутации исходным материалом для эволюции и селекции. Генные или точковые мутации классифицируются на 3 категории. Выделяют так называемые видимые мутации, то есть мутации, изменяющие видимые морфологические или физиологические свойства организмов. Второй крупной категорией являются биохимические мутации, изменяющие течение биосинтеза в клетках. Третьей категорией служат мутации, нарушающие жизнеспособность особей, так называемые летальные, полулетальные и сублетальные мутации. У человека обнаружены так называемые летальные гены (доминантные или рецессивные), которые вызывают гибель плода во время беременности и в ранние сроки после рождения. Например, гибель зародыша на ранних стадиях развития обуславливается доминантным аллелем гена брахидактилии (слайд № 4), который в гомозиготном состоянии вызывает развитие аномалии костной системы и внутренних органов, несовместимых с жизнью. В гетерозиготном состоянии этот ген не вызывает таких серьезных нарушений и приводит к развитию брахидактилии. Аналогично наследуется аненцефалия или отсутствие головного мозга. В гомозиготном состоянии развивается отсутствие головного мозга – уродство несовместимое с жизнью, а в гетерозиготном состоянии развивается незаращение задней стенки невральной пластинки.

По рецессивному типу наследуются несовместимые с жизнью заболевания, как ихтиоз и амовратическая идиотия Тея-Сакса. При ихтиозе верхние слои эпидермиса приобретают вид роговых чешуй, с кровоточащими трещинами. При идиотии Тея-Сакса в клетках мозга откладываются жироподобные вещества, больные обычно умирают в возрасте 2-3 лет.

Генные мутации подразделяются на генеративные и соматические. Генеративные мутации возникают в половых клетках и передаются потомству.

Чем раньше возникает мутация при образовании яйцеклеток или сперматозоидов, тем большее число ее потомков будет нести эту мутацию. Мутация, возникшая на стадии зрелой яйцеклетки или сперматозоида, остается единичной. Последствием таких мутаций являются возникновения различных генных или хромосомных заболеваний.

Соматические мутации возникают в соматических клетках и не передаются по наследству. В процессе эволюции соматические мутации не играют никакой роли, однако в индивидуальном развитии они влияют на формирование признака. Чем раньше в онтогенезе возникает соматическая мутация, тем большее число потомков несут данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых разный цвет глаз, наличие родинок и родимых пятен, прядь волос другого цвета
(слайд № 4). Соматические мутации не всегда безвредные для организма. Они могут нарушать метаболизм, являются причинами старения и злокачественных опухолей.

Хромосомные аберрации или структурные мутации хромосом выражаются в наличии межхромосомных и внутрихромосомных мутаций. К внутрихромосомным мутациям относятся: 1) делеции или нехватки - потери того или иного участка хромосом от одного гена до блока генов разной величины; 2) дупликации- добавление отдельных генов или блоков генов к основному набору;

3) инверсии - поворот блока генов внутри хромосом на 180 градусов. К межхромосомным мутациям относится явление транслокации, т.е. обмен участками между хромосомами, что приводит к образованию двух новых хромосом.

слайд № 5. Делеции и дупликации могут изменять численность отдельных генов в генотипе индивидуума, что приводит к соответствующим фенотипическим проявлениям. Значительные по размерам делеции обычно бывают летальными в гомозиготном состоянии, когда как очень мелкие делеции чаще всего не являются непосредственной причиной гибели гомозигот.

Инверсия возникает в результате полного разрыва двух краёв хромосомного участка с последующим поворотом этого участка на 180о и воссоединением разорванных концов. Появляющиеся при этом перестановки в расположении генов отдельной хромосомы (перестройки группы сцепления) также могут сопровождаться нарушениями экспрессии соответствующих генов.

Перестройки, изменяющие порядок и (или) содержание генных локусов в группах сцепления, происходят и в случае транслокаций. Наиболее часто встречаются реципрокные транслокации, при которых наблюдается взаимный обмен предварительно разорванными участками между двумя негомологичными хромосомами. В случае нереципрокной транслокации происходит перемещение (транспозиция) повреждённого участка в пределах той же хромосомы либо в хромосому другой пары, но без взаимного (реципрокного) обмена.

Геномные мутации или мутации числа хромосом выражаются наличием ряда типов: 1) полиплоидия – когда в ядре происходит увеличение количества геномов. Полиплоидные формы могут быть триплоидами (3n), тетраплоидами (4n), пентаплоидами (5n) и т.д. В том случае, когда умножение касается набора одного и того же вида, мы имеем дело с аутополиплоидией. В случае удвоения числа хромосом у гибридов, полученных от скрещивания разных видом, мы имеем дело с аллополиплоидностью; 2) гаплоидия – когда каждая хромосома представлена в наборе в единичном числе; 3) изменение числа хромосом за счет добавления или утерь отдельных хромосом – анеуплоидия, которая может быть представлена тремя основными типами изменений: а) моносомия при потере одной хромосомы из набора; для диплоидов это будет 2n-1, для тетраплоидов 4n-1 и т.д.; б) полисомия - при добавлении одной из некоторых хромосом в наборе, у диплоидов 2n+1; для тетраплоидов 4n+1 и т.д.; в) нулисомия – при потере обоих гомологов пары хромосом (2n-2, 4n-4 и т.д.).

В начале текущего столетия появление наследственных уклонений рассматривалось как явление полностью случайное и независимое от факторов внешней среды. Развитие генетики показало ошибочность теории автогенеза. Установлено, что появление мутаций детерминируется изменениями в молекулах ДНК, возникающими на основе нарушений в метаболизме организма и под прямым влиянием факторов среды. Эти принципы современной теории мутаций показывает всю опасность загрязнения среды мутагенами.

Причины появления мутаций могут корениться в естественных условиях среды, в особенностях обмена веществ. Мутации, возникающие от этих причин, получили название естественных, или спонтанных, мутаций. В наше время обнаружено много факторов, с помощью которых мутации могут быть вызваны искусственно. Мощным мутагеном является действие разных видов радиации, химические мутагены и другое. Мутации, получаемые под их воздействием, называют индуцированными мутациями.

Факторы, вызывающие мутации, называются мутагенами. Факторы окружающей среды называются экзомутагены, а продукты метаболизма в организме, способные вызвать мутации, называются эндомутагенами.

Экзомутагены поступают в организм человека из атмосферы, с водой, пищей, с лекарственными препаратами. Ежедневно мы получаем около 2-3г. мутагенных соединений.

Экзомутагены классифицируются на физические, химические и биологические.

К физическим мутагенам относятся все виды ионизирующего излучения (электромагнитные и корпускулярные).

Ионизирующие излучения воздействуют на наследственный материал ядра двумя путями: непосредственно - ионизируя и возбуждая атомы и молекулы ДНК и через воздействие на них ионизированных молекул воды. При косвенном действии чаще возникают генные мутации, а при прямом - хромосомные перестройки.

К более слабым физическим мутагенам относятся колебания to, давления, ультразвук, инфразвук, вибрация, шум (производственный).

Химические мутагены характеризуются большим многообразием и имеют природное и антропогенное происхождение.

Особые опасения вызывают искусственно синтезированные химические соединения - ксенобиотики.

По данным мировой статистики, в настоящий момент существует свыше 3,5 млн химических веществ и около 3 млн находится в стадии разработки. Ежегодно синтезируется до 25 тыс новых химических препаратов, примерно 1000 из которых внедряется в практику.

Большое количество ксенобиотиков различного происхождения мы получаем с пищей. Согласно заключению Международной организации по исследованию канцерогенного риска, пища давно уже перестала быть источником только белков, жиров, углеводов, витаминов и минералов. Она представляет собой сложную смесь мутагенов и канцерогенов различной природы: микотоксинов, нитрозосоединений, растительных алкалоидов, гетероциклических аминов, флавоноидов, отдельных ароматических углеводородов и т.д..

Более 50% пестицидов обладают генотоксической активностью (например, фосфорорганические, хлорорганические инсектициды и др.). У сельскохозяйственных рабочих, имеющих профессиональный контакт с пестицидами, значительно увеличивается уровень хромосомных аберраций и число микроядер в лимфоцитах периферической крови. Мутагенным эффектом обладают препараты, используемые для стимуляции роста и лечения животных.

Пищевое сырье может быть загрязнено мутагенами при длительном хранении, при термической обработке образуются в пищевых продуктах генотоксические полициклические ароматические углеводороды, гетероциклические амины и другие мутагены.

Микробиологическими методами показана мутагенная активность бренди, некоторых ликеров, кофе, виды быстрой пищи (гамбургеры, хот-доги), пищевые добавки (консерванты, красители, ароматизаторы, подсластители, загустители и др.), (всего насчитывается около 2500). В процессе метаболизма пищевых добавок образуются промежуточные продукты, которые могут обладать тератогенными и канцерогенными свойствами, вплоть до повреждения молекул ДНК.

Негативное влияние на генетические структуры оказывает курение. В состав табачного дыма входят около 400 химических веществ, из которых около 50 (полициклические углеводороды, табачные смолы, нитрозамины и др) обладают генотоксическим и канцерогенным эффектами. У курящих лиц существенно повышен уровень хромосомных аберраций.

К биологическим мутагенам относятся вирусы, простейшие, бактерии, гельминты. Вирусы - «живые» мутагены, они приносят в клетки собственную генетическую информацию, изменяя хромосомный аппарат (онкогенные вирусы, ретровирусы оспы, гриппа, коревой краснухи). Ретровирусы например вызывают лейкозы у людей, увеличивают число аутоиммунных болезней (эритематозная волчанка, аутоиммунный гломерулонефрит).

В процессе эволюции в организме выработались антимутагенные механизмы. Эволюционно, в организме выработались антимутационные механизмы, к которым относятся: диплоидный набор хромосом, двойная спираль ДНК, вырожденный генетический код, повторы некоторых генов, механизмы репарации или коррекции молекулярных нарушений структуры ДНК.

Для борьбы против влияния мутагенов среды на наследственность человека большие перспективы открывают исследования по антимутагенам. Такое название получили соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие повреждения с молекулы ДНК, вызванные мутагенами.

При разработке и анализе антимутагенных свойств возникают три важные вопроса:

1) может ли данное вещество- протектор быть эффективным, когда его применяют до воздействия мутагенов (т.е. может ли он стабилизировать генетические структуры);

2) эффективен ли данный протектор, когда он применяется одновременно с мутагеном;

3) сохраняет ли данный протектор эффективность, когда применяется после мутагенного воздействия, т.е. влияет ли он на репаративные процессы.

Выяснение этих вопросов играет важную роль и с теоретической и практической стороны, поскольку позволяет выбрать в каждом конкретном мутационном процессе нужный протектор.

В настоящее время известно большое количество веществ обладающих антимутагенным действием, но лишь в отношении немногие из них обладают универсальным действием и эффективны и при воздействии радиации, при воздействии химических мутагенов.

К таким протекторам относятся: производные тиолового ряда (цистеин, цистеамин, глутатион и др), серотонин, спермин, предшественники нуклеиновых кислот, некоторые аминокислоты (гистидин, аргинин, метионин), витамины (токоферол, аскорбиновая кислота, ретинол, каротин), провитамины и ферменты (пероксидаза, НАДФ-оксидаза, каталаза), комплексные соединения (растительного и животного происхождения), фармакологические средства (интерферон, оксипиридины, соли селена).

Таким образом, в условиях возрастающего антропогенного загрязнения окружающей среды и массового контакта населения с огромным количеством ксенобиотиков особую актуальность приобретает задача охраны наследственности человека от мутагенного действия физических, химических и биологических факторов.

 

Существует несколько классификаций мутаций.

1. Спонтанные и индуцированные.

Спонтанные мутации возникают при обычных физиологических состояниях организма без видимого дополнительного воздействия на организм внешних факторов. Индуцированные мутации – это мутации, вызванные направленным воздействием факторов внешней или внутренней среды.

Другая классификация предусматривает различие в зависимости от места возникновения мутаций (генеративные и соматические).

Генеративные мутации возникают в половых клетках и передаются потомкам.

Чем раньше возникает мутация при образовании яйцеклеток или сперматозоидов, тем большее число ее потомков будет нести эту мутацию. Мутация, возникшая на стадии зрелой яйцеклетки или сперматозоида, остается единичной. Последствием таких мутаций являются возникновения различных генных, геномных или хромосомных заболеваний

Соматические мутации возникают в соматических клетках и не передаются по наследству. В процессе эволюции соматические мутации не играют никакой роли, однако в индивидуальном развитии они влияют на формирование признака. Чем раньше в онтогенезе возникает соматическая мутация, тем большее число потомков несут данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых разный цвет глаз, наличие родинок и родимых пятен, прядь волос другого цвета
(слайд № 3). Соматические мутации не всегда безвредные для организма. Они могут нарушать метаболизм, являются причинами старения и злокачественных опухолей.

Следующая классификация мутаций учитывает различный эффект мутантных генов по степени их неблагоприятного влияния на жизнедеятельность организма.

 

У человека обнаружены так называемые летальные гены (доминантные или рецессивные), которые вызывают гибель плода во время беременности и в ранние сроки после рождения. Например, гибель зародыша на ранних стадиях развития обуславливается доминантным аллелем гена брахидактилии (слайд № 4), который в гомозиготном состоянии вызывает развитие аномалии костной системы и внутренних органов, несовместимых с жизнью. В гетерозиготном состоянии этот ген не вызывает таких серьезных нарушений и приводит к развитию брахидактилии. Аналогично наследуется аненцефалия или отсутствие головного мозга. В гомозиготном состоянии развивается отсутствие головного мозга – уродство несовместимое с жизнью, а в гетерозиготном состоянии развивается незаращение задней стенки невральной пластинки.

По рецессивному типу наследуются несовместимые с жизнью заболевания, как ихтиоз и амовратическая идиотия Тея-Сакса. При ихтиозе верхние слои эпидермиса приобретают вид роговых чешуй, с кровоточащими трещинами. При идиотии Тея-Сакса в клетках мозга откладываются жироподобные вещества, больные обычно умирают в возрасте 2-3 лет.

Еще в одной классификации показана зависимость наследственных болезней от характера мутаций и их влияния на потомство.

А) заболевания с аутосомно-доминантным и Х-сцепленным рецессивным типам наследования, при которых во многих случаях резко понижается или вообще отсутствует способность оставлять потомство.

Например, мышечная дистрофия Дюшена, с Х-сцепленным рецесивным типом наследования. Среди новорожденных мальчиков она встречается с частотой 20-30 случаев на 100000 населения. (Слайд № 5)

Заболевание проявляется уже в раннем возрасте в виде слабости в мышцах бедер и таза. Позже нарушается подвижность в суставах, появляются изменения в деятельности внутренних органов. При раннем начале заболевания прогноз для жизни неблагоприятный.

Б) заболевания с аутосомно-рецессивным типом наследования, при котором мутации в гетерозиготном состоянии себя не проявляет и не попадает под действие факторов отбора.

Суммарная частота аутосомно-рецессивных заболеваний составляет 2 на 1000 новорожденных. Отдельные заболевания встречаются еще реже.

Муковисцидоз – одна из наиболее частых форм наследственных генных заболеваний развивается у новорожденных или у детей раннего возраста. У таких больных в результате поражения желез внешней секреции образуется густой, вязкий секрет, накопление которого приводит к возникновению воспалительных процессов в органах желудочно-кишечного тракта, легких и т.д. Клинически заболевание обычно проявляется либо в легочной, либо в кишечной форме.

Еще одна классификация мутаций учитывает воздействие мутаций на наследственный аппарат. Это генные, геномные и хромосомные мутации, о которых более подробно мы поговорим на следующей лекции.

Эволюционно, в организме выработались антимутационные механизмы, к которым относятся: диплоидный набор хромосом, двойная спираль ДНК, вырожденный генетический код, повторы некоторых генов, механизмы репарации или коррекции молекулярных нарушений структуры ДНК.

Для борьбы против влияния мутагенов среды на наследственность человека большие перспективы открывают исследования по антимутагенам. Такое название получили соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие повреждения с молекулы ДНК, вызванные мутагенами.

При разработке и анализе антимутагенных свойств возникают три важные вопроса:

4) может ли данное вещество- протектор быть эффективным, когда его применяют до воздействия мутагенов (т.е. может ли он стабилизировать генетические структуры);

5) эффективен ли данный протектор, когда он применяется одновременно с мутагеном;

6) сохраняет ли данный протектор эффективность, когда применяется после мутагенного воздействия, т.е. влияет ли он на репаративные процессы.

Выяснение этих вопросов играет важную роль и с теоретической и практической стороны, поскольку позволяет выбрать в каждом конкретном мутационном процессе нужный протектор.

В настоящее время известно большое количество веществ обладающих антимутагенным действием, но лишь в отношении немногие из них обладают универсальным действием и эффективны и при воздействии радиации, при воздействии химических мутагенов.

К таким протекторам относятся: производные тиолового ряда (цистеин, цистеамин, глутатион и др), серотонин, спермин, предшественники нуклеиновых кислот, некоторые аминокислоты (гистидин, аргинин, метионин), витамины (токоферол, аскорбиновая кислота, ретинол, каротин), провитамины и ферменты (пероксидаза, НАДФ-оксидаза, каталаза), комплексные соединения (растительного и животного происхождения), фармакологические средства (интерферон, оксипиридины, соли селена).

Фенокопирование – это появление признаков, болезней или пороков развития, развивающихся под воздействием определенных условий среды и копирующие наследственные заболевания. Например, слепота, обусловленная помутнением хрусталика глаза (катаракта), может быть вызвана механическими повреждениями, действием ионизирующего излучения, влиянием во внутриутробного периоде вируса краснухи, или может возникнуть в следствии мутации специфического гена без дополнительного внешнего воздействия. Другой пример, фенокопирования, слабоумие,(слайд № 2) может быть вызвано генной или геномной мутацией или может развиться при отсутствии йода в рационе беременной женщины, и у ребенка в постнатальном периоде. Рахит может возникнуть при недостатке витамина Д, или в результате наследственной витаминоустойчивой формы рахита.

Существование фенокопий усложняет постановку диагноза. Врачу всегда нужно помнить, что сходные заболевания могут иметь как наследственную, так и не наследственную природу.

В основе наследственной или генотипической изменчивости лежат изменения в структуре генотипа.

Наследственная изменчивость подразделяется на комбинативную и мутационную.

Комбинативная изменчивость возникает вследствие случайной перекомбинации аллелей в генотипах родителей и потомков. Она возникает как следствие независимого расхождения хромосом в процессе мейоза, перекомбинации генов при кроссинговере и случайной встречи гамет при оплодотворении.

Комбинативная изменчивость является главным источником генетического разнообразия.

Причинами мутационной изменчивости являются мутации. Термин «мутации» принадлежит Де Фризу.

Мутации – это внезапные скачкообразные непредсказуемые и дискретные изменения наследственного материала.

В начале текущего столетия появление наследственных уклонений рассматривалось как явление полностью случайное и независимое от факторов внешней среды. Развитие генетики показало ошибочность теории автогенеза. Установлено, что появление мутаций детерминируется изменениями в молекулах ДНК, возникающими на основе нарушений в метаболизме организма и под прямым влиянием факторов среды. Эти принципы современной теории мутаций показывает всю опасность загрязнения среды мутагенами. в клетке, гены, как и все в мире, изменяются. Эти изменения получили название мутаций. Термин «мутации» принадлежит Де Фризу.

Мутации – это внезапные скачкообразные непредсказуемые и дискретные изменения наследственного материала.

Мутации, будучи новыми молекулярными состояниями генов, столь же стойки, как и гены, из которых они возникают. Путем ауторепродукции мутации передаются потомкам в бесчисленном ряду клеточных поколений.

Причины появления мутаций могут корениться в естественных условиях среды, в особенностях обмена веществ. Мутации, возникающие от этих причин, получили название естественных, или спонтанных, мутаций. В наше время обнаружено много факторов, с помощью которых мутации могут быть вызваны искусственно. Мощным мутагеном является действие разных видов радиации, химические мутагены и другое. Мутации, получаемые под их воздействием, называют индуцированными мутациями.

Факторы, вызывающие мутации, называются мутагенами. Факторы окружающей среды называются экзомутагены, а продукты метаболизма в организме, способные вызвать мутации, называются эндомутагенами.

Экзомутагены поступают в организм человека из атмосферы, с водой, пищей, с лекарственными препаратами. Ежедневно мы получаем около 2-3г. мутагенных соединений.

Экзомутагены классифицируются на физические, химические и биологические.

К физическим мутагенам относятся все виды ионизирующего излучения (электромагнитные и корпускулярные), которые в малых дозах оказывают на организм вредное действие, а при большой дозе летальны. К электромагнитным (волновым) излучениям относятся ультрафиолетовые лучи, лучи Рентгена и гамма- излучения. К корпускулярным излучениям относятся нейтроны, дейтроны, протоны, g- частицы, позитроны, быстрые электроны. Особенно велика мутагенная активность нейтронов, их проникающая способность в 25 раз выше, чем у электромагнитных излучений.

Ионизирующие излучения воздействуют на наследственный материал ядра двумя путями: непосредственно - ионизируя и возбуждая атомы и молекулы ДНК и через воздействие на них ионизированных молекул воды. При косвенном действии чаще возникают генные мутации, а при прямом - хромосомные перестройки.

К более слабым физическим мутагенам относятся колебания to, давления, ультразвук, инфразвук, вибрация, шум (производственный).

Химические мутагены характеризуются большим многообразием и имеют природное и антропогенное происхождение.

Особые опасения вызывают искусственно синтезированные химические соединения - ксенобиотики.

По данным мировой статистики, в настоящий момент существует свыше 3,5 млн химических веществ и около 3 млн находится в стадии разработки. Ежегодно синтезируется до 25 тыс новых химических препаратов, примерно 1000 из которых внедряется в практику

. Большое количество ксенобиотиков различного происхождения мы получаем с пищей.

Согласно заключению Международной организации по исследованию канцерогенного риска, пища давно уже перестала быть источником только белков, жиров, углеводов, витаминов и минералов. Она представляет собой сложную смесь мутагенов и канцерогенов различной природы: микотоксинов, нитрозосоединений, растительных алкалоидов, гетероциклических аминов, флавоноидов, отдельных ароматических углеводородов и т.д..

Возможно, несколько принципиально различных путей попадания потенциальных мутагенов в пищу.

Несколько десятков неорганических соединений накапливаются в объектах растениеводства и животноводства, загрязняя пищевые продукты. Ртуть аккумулируется в тканях рыб, в овощи из почвы переходят: до 37% марганца, до 32% меди, до 41% цинка, до 10% никеля. В зерновых и картофеле накапливаются соединения кадмия, никеля, свинца, цинка, хрома, кобальта, для которых доказан генотоксический эффект.

Более 50% пестицидов обладают генотоксической активностью (например, фосфорорганические, хлорорганические инсектициды и др.). Доказано, что у сельскохозяйственных рабочих, имеющих профессиональный контакт с пестицидами, значительно увеличивается уровень хромосомных аберраций и число микроядер в лимфоцитах периферической крови. Мутагенным эффектом обладают препараты, используемые для стимуляции роста и лечения животных.

Пищевое сырье может быть загрязнено мутагенами при хранении, например, в результате поражения плесневыми грибами - продуцентами микотоксинов.

При длительном хранении или приготовлении пищи, происходи окисление холестерина и промежуточные продукты, которые образуются при этом обладают мутагенными свойствами.

Термические воздействия приводят к образованию и накоплению в пищевых продуктах генотоксических полициклических ароматических углеводородов, гетероциклических аминов и других мутагенов.

Например, многие полуфабрикаты мясных блюд промышленного производства содержат гетероциклические амины, для которых доказан мутагенный эффект. (Например, гамбургеры, «hot dogs» и других виды «быстрой» пищи, которую обычно готовят при температуре 230оС).

Микробиологическими методами показана мутагенная активность бренди, некоторых ликеров, кофе.

Пищевые добавки (консерванты, красители, ароматизаторы, подсластители, загустители и др.), (всего насчитывается около 2500), в дозах превышающих физиологические потребности организма, могут представлять генотоксическую опасность. В процессе их метаболизма образуются промежуточные продукты, которые могут обладать тератогенными и канцерогенными свойствами, вплоть до повреждения молекул ДНК.

Негативное влияние на генетические структуры оказывает курение. В состав табачного дыма входят около 400 химических веществ, из которых около 50 (полициклические углеводороды, табачные смолы, нитрозамины и др) обладают генотоксическим и канцерогенным эффектами. У курящих лиц существенно повышен уровень хромосомных аберраций.

Таким образом, в условиях возрастающего антропогенного загрязнения окружающей среды и массового контакта населения с огромным количеством ксенобиотиков особую актуальность приобретает задача охраны наследственности человека от мутагенного действия химических факторов.

К биологическим мутагенам относятся вирусы, простейшие, бактерии, гельминты. Вирусы - «живые» мутагены, они приносят в клетки собственную генетическую информацию, изменяя хромосомный аппарат (онкогенные вирусы, ретровирусы оспы, гриппа, коревой краснухи). Ретровирусы например вызывают лейкозы у людей, увеличивают число аутоиммунных болезней (эритематозная волчанка, аутоиммунный гломерулонефрит).

Вирусы способны индуцировать хромосомные мутации в половых клетках и в соматических.

Слабый мутагенный эффект оказывают токсины биологического происхождения (продукты жизнедеятельности гельминтов и простейших, например, токсоплазма вызывает врожденный токсоплазмоз).

Существует несколько классификаций мутаций.

1. Спонтанные и индуцированные.

Спонтанные мутации возникают при обычных физиологических состояниях организма без видимого дополнительного воздействия на организм внешних факторов. Индуцированные мутации – это мутации, вызванные направленным воздействием факторов внешней или внутренней среды.

Другая классификация предусматривает различие в зависимости от места возникновения мутаций (генеративные и соматические).

Генеративные мутации возникают в половых клетках и передаются потомкам.

Чем раньше возникает мутация при образовании яйцеклеток или сперматозоидов, тем большее число ее потомков будет нести эту мутацию. Мутация, возникшая на стадии зрелой яйцеклетки или сперматозоида, остается единичной. Последствием таких мутаций являются возникновения различных генных, геномных или хромосомных заболеваний

Соматические мутации возникают в соматических клетках и не передаются по наследству. В процессе эволюции соматические мутации не играют никакой роли, однако в индивидуальном развитии они влияют на формирование признака. Чем раньше в онтогенезе возникает соматическая мутация, тем большее число потомков несут данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых разный цвет глаз, наличие родинок и родимых пятен, прядь волос другого цвета
(слайд № 3). Соматические мутации не всегда безвредные для организма. Они могут нарушать метаболизм, являются причинами старения и злокачественных опухолей.

Следующая классификация мутаций учитывает различный эффект мутантных генов по степени их неблагоприятного влияния на жизнедеятельность организма.

У человека обнаружены так называемые летальные гены (доминантные или рецессивные), которые вызывают гибель плода во время беременности и в ранние сроки после рождения. Например, гибель зародыша на ранних стадиях развития обуславливается доминантным аллелем гена брахидактилии (слайд № 4), который в гомозиготном состоянии вызывает развитие аномалии костной системы и внутренних органов, несовместимых с жизнью. В гетерозиготном состоянии этот ген не вызывает таких серьезных нарушений и приводит к развитию брахидактилии. Аналогично наследуется аненцефалия или отсутствие головного мозга. В гомозиготном состоянии развивается отсутствие головного мозга – уродство несовместимое с жизнью, а в гетерозиготном состоянии развивается незаращение задней стенки невральной пластинки.

По рецессивному типу наследуются несовместимые с жизнью заболевания, как ихтиоз и амовратическая идиотия Тея-Сакса. При ихтиозе верхние слои эпидермиса приобретают вид роговых чешуй, с кровоточащими трещинами. При идиотии Тея-Сакса в клетках мозга откладываются жироподобные вещества, больные обычно умирают в возрасте 2-3 лет.

Еще в одной классификации показана зависимость наследственных болезней от характера мутаций и их влияния на потомство.

А) заболевания с аутосомно-доминантным и Х-сцепленным рецессивным типам наследования, при которых во многих случаях резко понижается или вообще отсутствует способность оставлять потомство.

Например, мышечная дистрофия Дюшена, с Х-сцепленным рецесивным типом наследования. Сре

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...