Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отношение микроорганизмов к молекулярному кислороду.

ОБМЕН ВЕЩЕСТВ У МИКРООРГАНИЗМОВ

Основу жизнедеятельности микроорганизмов, как и всех живых существ, составляет обмен веществ. Обмен веществ (метаболизм) — это совокупность протекающих в клетке химических превращений веществ, которые протекают в тесном взаимодействии с внешней средой. Обмен веществ у микроорганизмов слагается из двух типов процессов: процессов конструктивного обмена и энергетического.

Конструктивный обмен веществ — это биосинтез полимерных макромолекул клетки (белков, полисахаридов, нуклеиновых кислот, компонентов клеточной стенки и др.) за счет веществ, поступающих из внешней среды.

Для осуществления процессов биосинтеза, активного переноса веществ из питательной среды через ЦПМ в клетку, размножения, движения микроорганизмов необходима энергия. Они ее получают различными путями, но в основном в резуль­тате процессов окисления органических и минеральных ве­ществ, поступивших в клетку. Этот процесс называется энергетическим обменом. В результате выделяется энергия, которая запасается в форме аденозинтрифосфорной кислоты (АТФ), а затем она может использоваться на нужды клетки.

Конструктивные и энергетические процессы протекают в клетке одновременно и тесно связаны между собой. Часто одно и то же вещество служит исходным материалом и для биосинтеза веществ клетки и для получения энергии (например, углеводы, органические кислоты и др.).

Обмен веществ микроорганизмов отличается чрезвычайным разнообразием. Это связано со способностью микроорганизмов, использовать для обмена веществ очень широкий круг органи­ческих и минеральных соединений. Такая способность обусловливается наличием у микроорганизмов большого разнообразия ферментов.

 

КОНСТРУКТИВНЫЙ ОБМЕН

Конструктивный обмен веществ заключается в биосинтезе основных клеточных компонентов из поступивших в клетку веществ питательной среды. При рассмотрении химического состава микроорганизмов отмечалось, что основная масса ор­ганических веществ клетки состоит из макромолекул (поли­сахаридов, липидов, белков, нуклеиновых кислот), которые, за исключением липидов, являются полимерами. Образованию полимеров предшествует синтез составляющих их мономеров. Для биосинтеза полисахаридов необходимые мономеры — различные моносахариды, для белков — аминокислоты, для нук­леиновых кислот — рибо- и дезоксирибонуклеотиды. Мономеры могут быть синтезированы клеткой из более простых соедине­ний или должны поступать в готовом виде из питательной среды.

Чем больше число готовых соединений, которые должен по­лучать организм извне, тем ниже уровень его биосинтетических способностей. Гетеротрофные микроорганизмы обладают высо­кими потребностями в готовых органических веществах и, сле­довательно, низкой биосинтетической способностью. Автотрофы в противоположность гетеротрофам обладают наиболее высо­кой биосинтетической способностью, они синтезируют из диок­сида углерода сначала мономеры, а затем и все сложные кле­точные компоненты.

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН

Для переноса питательных веществ через ЦПМ, биосинтеза из них основных клеточных компонентов, для размножения, движения и т. д. микроорганизмам необходима энергия.

Источники энергии. Микроорганизмы могут использовать два вида энергии: энергию видимого света и химическую энергию, высвобождающуюся при окислении различных восстановленных соединений.

Микроорганизмы, для которых источником энергии служит
свет, называются фототрофами. Микроорганизмы, для которых
источниками энергии служат процессы окисления химических
соединений, называются хемотрофами.

Микроорганизмы могут окислять некоторые восстановленные неорганические соединения и любые природные восстановленные органические соединения. Окисляться микроорганизмами могут даже ядовитые вещества (фенол), а также синтетические материалы (пластмасса, искусственный каучук и др.) и даже асфальт, битум и т. д. Высокомолекулярные органические соединения предварительно гидролизуются (расщепляются) с помощью экзоферментов до мономеров. Процессы гидролиза клетке энергии не дают. Мономеры подвергаются окислению через ряд последовательно идущих ферментативных процессов и в результате сложных реакций в клетке накапливается энергия.

Органические вещества окисляются путем отдачи водорода— дегидрированием. Поскольку атом водорода состоит из; протона и электрона, то перенос водорода с одного вещества на другое включает и перенос электрона. Вещество, отдающее электроны или водород, называют донором, а вещество, их присоединяющее, акцептором. Поэтому термины окисление и дегидрирование, донор электронов и донор водорода, акцептор электронов и акцептор водорода являются синонимами. Окислением является также и присоединение к веществу кисло­рода.

Водород и электроны, отнятые от окисляемого субстрата (донора), переносятся к конечному акцептору не непосредственно, а ступенчато, поэтапно, с помощью различных окислительно-восстановительных ферментов. К таким ферментам относятся дегидрогеназы, которые переносят водород, и ферменты цито-хромной системы — цитохромы и цитохромоксидаза, которые переносят электроны. Дегидрогеназы и цитохромная система образуют так называемую дыхательную цепь. Так как перенос водорода и электронов — эквивалентные процессы, то дыхательную цепь рассматривают как цепь переноса электронов (электрон-транспортная цепь). Терминальным (конечным) ферментом этой цепи является цитохромоксидаза. Она передает электроны молекулярному кислороду, который при этом активируется и приобретает способность соединяться с ионами во­дорода, в результате чего образуется вода.

Схематично реакцию окисления — восстановления при участии дегидрогеназы можно представить следующим образом:

 

Дегидрогеназа

АН2 + В ---------- А + ВН2 + Энергия

Донор Акцептор Окислен- Восстанов-

водорода водорода ное ве- ленное

щество вещество'

 

Отношение микроорганизмов к молекулярному кислороду.

Набором окислительно-восстановительных ферментов обусловливается отношение микроорганизмов к молекулярному кислороду. В зависимости от способа получения энергии и от конечного акцептора водорода микроорганизмы можно разделить в основном на три физиологические группы по отношению к молекулярному кислороду: облигатные аэробы, облигатные анаэробы и факультативные (условные) анаэробы.

Облигатные ( строгие) аэробы растут только в присутствии 02. К ним относится часть автотрофов и большинство гетеротрофных микроорганизмов (например, уксуснокислые, многие гнилостные бактерии, актиномицеты, мицелиальные грибы и некоторые дрожжи). Среди облигатных аэробов встречаются; микроаэрофилы, лучше всего развивающиеся при низких концентрациях 02 —около 2%. Аэробные гетеротрофные микроорганизмы окисляют органические вещества в присутствии молекулярного кислорода, который и является конечным акцептором водорода. Автотрофы окисляют минеральные вещества путем прямого присоединения кислорода.

Анаэробы не требуют для своего развития присутствия 02, и их энергетические и конструктивные процессы протекают без участия молекулярного кислорода. Конечными акцепторами водорода служат органические или неорганические вещества. Анаэробы, в свою очередь, подразделяются на облигатные и факультативные. Облигатные не переносят даже ничтожных количеств 02 в среде и быстро погибают. Для них кислород ядовит. К строгим анаэробам относятся маслянокислые бак­терии, возбудитель тяжелого пищевого отравления — ботулизма и др. Факультативные анаэробы могут расти как в присутствии, так и в отсутствие 02, например бактерии кишечной группы, молочнокислые бактерии, большинство дрожжей, часть гнилостных бактерий.

Начало окислительного процесса независимо от того, участвует в нем молекулярный кислород или нет, связано с воздействием на соответствующие окисляемые субстраты дегидрогеназ. Поэтому дегидрогеназы имеются абсолютно у всех микроорганизмов— и у анаэробов, и у аэробов. Цитохромы имеются у аэробов и у факультативных анаэробов, но никогда не встречаются у строгих анаэробов. Цитохромоксидаза имеется только у аэробов, поэтому они могут осуществлять полное окисление субстрата до С02 и Н20.

Особенности энергетических процессов у микроорганизмов. Способы получения энергии у микроорганизмов различны в отличие от высших организмов, для которых источником энергии является либо процесс дыхания (у животных), либо процесс фотосинтеза (у растений).

Окисление у микроорганизмов не обязательно идет до конца, до образования С02 и Н20. Может проходить и неполное окисление органических веществ в присутствии кислорода воздуха с образованием промежуточных недоокисленных продуктов. Кроме того, микроорганизмам для осуществления процес­сов окисления не обязательно присутствие кислорода воздуха — они могут окислять органические вещества с помощью кислорода, находящегося в соединениях, богатых им, — нитратов (нитратное дыхание) или сульфатов (сульфатное дыхание). И, наконец, микроорганизмы могут существовать без доступа воздуха и получать энергию без участия кислорода путем процесса брожения.

Несмотря на такое разнообразие способов получения энергии у микроорганизмов, все они сводятся в основном к окисле­нию молекул различных восстановленных веществ и восстановлению молекул других окисляющих веществ. Эти реакции объединены под названием биологическое окисление.

В процессебиохимических превращений веществ происходит разрывхимических связей, сопровождающийся выделением энергии. Это так называемая свободная (потенциальная) энергия, которая не может непосредственно использоваться живыми организмами, а должна быть преобразована в биологически усвояемую форму энергии.

Особенностью биологического окисления является то, что выделяющаяся при разрыве химических связей свободная энер­гия трансформируется в энергию макроэргических связей АТФ. Химические связи называются макроэргическими потому, что при их разрыве высвобождается большое количество свободной энергии. Соединения, имеющие такие связи, называются макроэргическими. АТФ имеет две макроэргические фосфатные связи, энергия разрыва которых составляет 31,8 кДж/моль каждая, в то время как у большинства веществ эта энергия равна около 12 кДж/моль.

АТФ является универсальным аккумулятором энергии для всех живых организмов. В молекулах АТФ энергия хранится очень недолго (продолжительность «жизни» молекул АТФ составляет около 7з с) и тут же расходуется на обеспечение энергией всех протекающих в данный момент процессов. Малые размеры молекул АТФ позволяют ей легко диффундировать в различные участки клетки, где необходим приток энергии. При этом происходит разрыв макроэргической связи в молекуле АТФ и отрыв от нее фосфатной группы с высоким энергетическим потенциалом. Разрыв связи приводит к резкому уменьшению свободной энергии, заключенной в АТФ. Поэтому молекула АТФ должна постоянно регенерироваться, то есть должен происходить синтез АТФ путем присоединения к молекуле фосфатной группы, что повышает уровень ее свободной энергии и переводит в активированную форму. Активированная АТФ может далее участвовать в процессах метаболизма. Таким образом, АТФ является универсальным переносчиком энергии и с ее помощью происходит перераспределение энергии между реакциями, идущими с выделением и затратой энергии; АТФ локализуется у прокариот в ЦПМ, у эукариот — в митохондриях.

.Процесс превращения свободной химической энергии в биологически полезную форму сложен. Обязательным условием является многоступенчатость процесса биологического окисления, так как только на некоторых этапах окисления исходного вещества происходит образование энергии, то есть синтез АТФ. Не вся свободная энергия окисления как органических, так и неорганических веществ переводится в доступную для клетки форму и аккумулируется в АТФ. Часть образовавшейся свободной энергии рассеивается в виде тепловой, реже — световой (свечение морской воды, рыбы, сгнившего дерева) и электрической энергии. Если же в определенных условиях клетка запасает энергии больше, чем может истратить на все энерго­потребляющие процессы, то тогда она синтезирует в значи­тельных количествах высокомолекулярные запасные вещества (главным образом, полисахариды — гранулеза, гликоген, реже— липиды), которые могут служить энергетическим мате­риалом для микроорганизмов в условиях голодания и недостат­ка внешних источников энергии. При необходимости эти вещества подвергаются биохимическим превращениям и снаб­жают клетку энергией.

Энергетические процессы по своему объему значительно пре­восходят конструктивные. Вещества питательной среды исполь­зуются, в первую очередь, для осуществления энергетического обмена. Полученная энергия прежде всего необходима для биосинтеза клеточных компонентов. Более половины получен­ной энергии расходуется на биосинтез белков, часть энергии идет на синтез ДНК и РНК, полисахаридов и др., то есть на биосинтетические процессы, связанные с ростом клеток. Часть энергии тратится на поддержание жизнедеятельности клетки — на осуществление активного транспорта веществ питательной среды через ЦПМ внутрь клетки, размножение, движение.

Энергетические процессы тесно связаны с конструктивным обменом. В ходе биологического окисления образуются разно­образные низкомолекулярные промежуточные продукты (фосфорные эфиры Сахаров, пировиноградная, уксусная, щавелево-уксусная, янтарная, а-кетоглутаровая кислоты), из которых синтезируются сначала мономеры (аминокислоты, пуриновые и пиримидиновые основания, моносахариды и др.), а затем основные макромолекулы клетки (белки, нуклеиновые кислоты).

Взаимосвязь конструктивного и энергетического обменов заключается и в том, что процессы биосинтеза кроме энергии требуют поступления извне восстановителя в виде водорода (электронов), источником которого также служат реакции энергетического обмена.

Часть промежуточных низкомолекулярных продуктов, образующихся при энергетическом обмене, превращается в уксусную, молочную, масляную кислоты, этиловый спирт и др. Эта сторона энергетического обмена используется в практический деятельности человека, в частности в пищевых производствах.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...