Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Знать определения (уметь также распознавать их среди предложенного набора высказываний), уметь приводить примеры, удовлетворяющие и не удовлетворяющие определениям

Обязательная часть

(знать определения, формулировки и доказательства теорем, свойств)

1. Понятие последовательности. Определения: ограниченной, неограниченной, монотонных последовательностей. Примеры.

2. Определения сходящейся последовательности: на ε-n языке, на языке окрестностей. Свойства сходящихся последовательностей: единственность предела, ограниченность, переход к пределу в неравенствах, сохранение знака предела.

3. Арифметические операции над последовательностями, имеющими предел.

4. Бесконечно малые и бесконечно большие последовательности. Теорема о необходимом и достаточном условии существования предела последовательности. Свойства бесконечно-малых и бесконечно-больших последовательностей.

5. Понятие функции. Способы задания функции. Классы функций: монотонные, ограниченные, периодические, четные, нечетные.

6. График функции. Основные элементарные функции (, , , , , , , , , , ): определения, свойства (область определения, область значений, четность, периодичность, монотонность, наличие экстремумов и асимптот - без доказательства), графики.

7. Определения предела функции в точке: на ε-δ языке, на языке последовательностей, на языке окрестностей. Односторонние пределы. Предел функции при .

8. Свойства функций, имеющих предел в точке (локальная ограниченность, сохранение знака, переход к пределу в неравенствах, арифметические операции).

9. Бесконечно-малые и бесконечно-большие функции. Их свойства.

10. Определения непрерывности функции в точке. Свойства функций, непрерывных в точке.

11. Точки разрыва и их классификация.

12. Замечательные пределы. Следствия из 2-го замечательного предела.

13. Сравнение функций. Понятие о-малого, эквивалентных функций. Основные эквивалентности. Теорема о замене функций на эквивалентные функции при вычислении пределов.

14. Определение точных граней.

15. Определение фундаментальной последовательности. Формулировки критерия Коши сходимости последовательности и существования предела функции.

Дополнительная часть (знать формулировки теорем и указанные доказательства)

16. Теорема о пределе монотонной ограниченной последовательности.

17. Число e (с доказательством).

18. Принцип вложенных отрезков (с доказательством).

19. Теорема Больцано-Вейерштрасса (с доказательством).

20. Теорема существования точных граней.

21. Критерий Коши сходимости последовательности (с доказательством).

22. Критерий Коши существования предела функции.

23. Свойства функций, непрерывных на отрезке: ограниченность (с доказательством), достижение наибольших и наименьших значений.

24. Теоремы об обращении функции в ноль (с доказательством) и о промежуточном значении.

25. Понятие равномерной непрерывности. Теорема Кантора.

26. Понятие обратной функции. Теорема существования обратной функции.


БАЗОВЫЙ УРОВЕНЬ К КОЛЛОКВИУМУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

(ЭКТ-1, 1 семестр) 2011/12 гг.

Уметь распознавать:

1.1. Сходящиеся и расходящиеся последовательности.

1.2. Ограниченные и неограниченные последовательности.

1.3. Монотонные последовательности.

1.4. Бесконечно малые и бесконечно большие последовательности.

1.5. Точки разрыва, непрерывности функций.

1.6. Эквивалентные функции

Знать определения (уметь также распознавать их среди предложенного набора высказываний), уметь приводить примеры, удовлетворяющие и не удовлетворяющие определениям

2.1. Ограниченных последовательностей (включая ограниченные сверху и снизу).

2.2. Возрастающих, убывающих, невозрастающих, неубывающих последовательностей.

2.3. Предела последовательности (на ε-n языке, на языке окрестностей)

2.4. Бесконечно малые и бесконечно большие последовательности.

2.5. Предела функции в точке (все 16 случаев) по Коши и по Гейне.

2.6. Непрерывности функции в точке, на интервале, отрезке.

2.7. Точек разрыва: устранимых, 1 рода, 2 рода.

2.8. Эквивалентных функций, порядка малости одной функции относительно другой, о-малого.

2.9. Односторонних пределов.

2.10. Знать замечательные пределы и следствия из них.

2.11. Точных граней.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...