Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция 19. Воздушное отопление




Лекция 19

ВОЗДУШНОЕ ОТОПЛЕНИЕ

Рециркуляция воздуха– Для системы воздушного отопления воздух забирается не с улицы, а из помещения. Тем самым достигается экономия тепловой энергии, расходуемой для подогрева воздуха.

Воздухораспределитель - Устройство для выпуска воздуха в помещение, обеспечивающее необходимую подвижность воздуха в нужном месте.                    

Рекуперация – Утилизация тепла уходящего воздуха в поверхностном теплообменнике.

Отопительные агрегаты Устройства, предназначенные для нагрева воздуха в местных системах отопления

  Общеобменная приточная вентиляция - Приточная вентиляция, обеспечивающая требуемые параметры воздуха во всём объёме помещения.

Местная приточная вентиляция - Приточная вентиляция, обеспечивающая требуемые параметры воздуха на локальных рабочих местах.

   

                                  

СОДЕРЖАНИЕ ТЕМЫ

19. 6. Система воздушного отопления.

19. 7.  Схемы систем воздушного отопления

19. 8. Количество и температура воздуха для отопления.

19. 9. Местное воздушное отопление.

19. 10. Отопительные агрегаты.

 

                 19. 1 Система воздушного отопления

В системах воздушного отопления используется атмосферный воздух, свойства которого как теплоносителя рассмотрены.

Воздушное отопление имеет много общего с другими видами централизованного отопления. И воздушное, и водяное отопление основано на передаче теплоты в отапливаемые помещения от охлаждающегося теплоносителя. В центральной системе воздушного отопления, как и в системах водяного и парового отопления, имеются теплогенератор — центральная установка для нагревания воздуха — и теплопроводы — каналы для перемещения теплоносителя воздуха.

Воздух для отопления обычно является вторичным теплоносителем, так как нагревается в калориферах другим, первичным теплоносителем — горячей водой или паром. Таким образом, система воздушного отопления фактически становится комбинированной — водовоздушной или паровоздушной. Для нагревания воздуха используют также другие отопительные приборы и иные теплоисточники. Например, в ранее распространенной системе огневоздушного отопления воздух нагревался в огневых печах.

В системе воздушного отопления воздух, нагретый до температуры более высокой, чем температура воздуха в помещениях, отдает избыток теплоты и, охладившись, возвращается для повторного нагревания. Этот процесс может осуществляться двумя способами:

1) нагретый воздух, попадая в обогреваемое помещение, смешивается с окружающим воздухом и охлаждается до температуры этого воздуха;

2) нагретый воздух не попадает в обогреваемое помещение, а перемещается в окружающих помещение каналах, нагревая их стенки.

В настоящее время распространен первый способ (рассматриваемый в данной главе). Второй способ после натурной проверки в жилых зданиях в начале второй половины XX в. не получил широкого распространения. Эксперименты показали, что в процессе эксплуатации системы нарушается плотность каналов. В стенках и стыках каналов, расширяющихся при нагревании и сжимающихся при охлаждении, появляются трещины, в результате чего искажается необходимое воздухораспределение. Это, в свою очередь, приводит к перегреванию одних и недогреванию других помещений.

Известно одно из достоинствцентральной системы воздушного отопления — отсутствие отопительных приборов в обогреваемых помещениях. Однако, если радиус действия системы воздушного отопления сужается до одного помещения, то воздухонагреватель может устанавливаться непосредственно в этом помещении, и тогда система становитсяместной. Отличие её от системы водяного отопления будет в том, что тепловая мощность воздухонагревателя значительно больше мощности одного обычного отопительного прибора, и в помещении создается интенсивная циркуляция воздуха.

Местной делают систему воздушного отопления в том случае, если в помещении отсутствует центральная система приточной вентиляции, а также при незначительном объеме приточного воздуха, подаваемого в течение 1 ч (менее половины объема помещения).

Для воздушного отопления характерно повышение санитарно-гигиенических показателей воздушной среды помещения. Могут быть обеспечены подвижность воздуха, благоприятная для нормального самочувствия людей, равномерность температуры помещения, а также смена, очистка и увлажнение воздуха. Кроме того, при устройстве местной системы воздушного отопления достигается экономия металла.

Свойство системы воздушного отопления — быстро изменять теплоподачу в помещение — используется при осуществлении периодического или дежурного отопления.

Вместе с тем, воздушное отопление не лишено существенных недостатков. Как известно, площадь поперечного сечения и поверхности воздуховодов из-за малой теплоаккумулирующей способности воздуха во много раз превышает площадь сечения и поверхности жидкостных теплопроводов.

  НАПОМИНАЕМ При доставке в помещение одного и того же количества тепла теплоносителями водой и воздухом при средних параметрах сечение воздуховодов будет в 800 раз больше. Основная причина – маленькая теплоёмкость воздуха

 

В сети значительной протяженности заметно охлаждается воздух, несмотря на то, что воздуховоды покрывают тепловой изоляцией. По этим причинам применение центральной системы воздушного отопления в сравнении с другими системами может оказываться экономически нецелесообразным. Местное воздушное отопление не имеет перечисленных недостатков, однако не лишено отрицательных черт, обусловленных размещением отопительного оборудования непосредственно в помещении.

Необходимость устранения отопительных приборов из помещения может препятствовать использованию местного воздушного отопления. Если к тому же требуется обеспечить ряд помещений приточной вентиляцией, то только при центральной системе воздушного отопления совместно выполняются оба эти условия.

Возможность совмещения воздушного отопления с приточной вентиляцией в холодный период, g охлаждением помещений в летний период сближает воздушное отопление с вентиляцией и кондиционированием воздуха и предопределяет дополнительное рассмотрение общих вопросов при изучении соответствующих дисциплин.

В настоящее время системы воздушного отопления устраивают в производственных, гражданских и сельскохозяйственных зданиях, применяя рециркуляцию воздуха (24. 2) или совмещая отопление с общеобменной приточной вентиляцией (24. 6). Известно также использование нагретого воздуха для отопления жилых зданий и гостиниц (например, отопление корпусов пансионата на Клязьминском водохранилище под Москвой)

 

19. 2 Схемы системы воздушного отопления

На рис. 19. l даны принципиальные схемыместной системы воздушного отопления. Чисто отопительная система с полной рециркуляцией теплоносителя воздуха может быть бесканальной (рис. 19. 1, а) и канальной (рис. 19. 1, б). При бесканальной системе внутренний воздух, имеющий температуру tв, нагревается первичным теплоносителем в калорифере до температуры tг и перемещается вентилятором. Наличие вертикального канала для горячего воздуха вызывает естественную циркуляцию внутреннего воздуха через помещение и калорифер. Эти две схемы применяют для местного воздушного отопления помещений, не нуждающихся в искусственной приточной вентиляции.

Для местного воздушного отопления помещения одновременно с приточно-вытяжной вентиляцией используют две другие схемы, изображенные на рис. 19. 1, в, г. По схеме на рис. 19. 1, в с частичной рециркуляцией часть воздуха забирается снаружи, другая часть внутреннего воздуха подмешивается к наружному (осуществляется частичная рециркуляция воздуха). Смешанный воздух догревается в калорифере и подается вентилятором в помещение. Помещение обогревается всем поступающим в него воздухом, а вентилируется только той его частью, которая забирается снаружи. Эта часть воздуха удаляется из помещения в атмосферу (по каналу 7 на рис. 19. 1, в).

Схема на рис. 19. 1, г — прямоточная: наружный воздух в количестве, необходимом для вентиляции помещения, дополнительно нагревается для отопления, а после охлаждения до температуры помещения удаляется в таком же количестве в атмосферу.

Центральная система воздушного отопления — канальная. Воздух нагревается до необходимой температуры в тепловом центре здания и выпускается в помещения через воздухораспределители. Принципиальные схемы центральной системы приведены на рис. 19. 2.

В схеме на рис. 19. 2, а нагретый воздух по специальным каналам распределяется по помещениям, а охладившийся воздух по другим каналам возвращается для повторного нагревания в теплообменнике — калорифере. Совершается, как и в схеме на рис. 19. 1 а, полная рециркуляция воздуха без вентиляции помещений. Теплопередача в калорифере соответствует теплопотерям помещений, т. е. схема является чисто отопительной

Схема на рис. 19. 2, б с частичной рециркуляцией) по действию не отличается от схемы на рис. 19. 1, в. На рис. 19. 2, в изображена прямоточная схема центральной системы воздушного отопления, аналогичная схеме на рис. 19. 1, г.

 

 

Рис. 19. 1 Принципиальные схемы местной системы воздушного отопления

 

а, б — полностью рециркуляционнне; в — частично рециркуляционная; a • прямоточная; 1 — отопительный агрегат; 2 — рабочая зона; 3 — канал нагретого воздуха; 4 — теплообменник-калорифер; 5 — воздухозабор; 6 — рециркулирующий воздух; 7 — канал вытяжной вентиляции

 

Рис. 19. 2. Принципиальные схемы центральной системы воздушного отопления

а — полностью рециркуляциониая; б — частично рециркуляционная; в — прямоточная; г — рекуперативная; 1 — теплообменник-калорифер; 2 — канал нагретого воздуха с воздухораспределителем на конце; 3 — канал внутреннего воздуха; 4 — вентилятор; 5 — канал наружного воздуха: 6 — воздухо-воздушный теплообменник; 7 — рабочая зона

 

В схемах на рис. 19. 1, а, б и 19. 2, а теплозатраты на нагревание воздуха определяются только теплопотерями помещений; в схемах на рис. 19. 1, в и 19. 2, б они возрастают в результате предварительного нагревания части воздуха от температуры наружного воздуха tн до температуры tв; в схемах на рис. 19. 1, г и 19. 2, в теплозатраты наибольшие, так как весь воздух необходимо нагреть сначала от температуры tн до tв а потом перегреть до tг (тепловая энергия расходуется и на отопление, и на полную вентиляцию помещений).

Рециркуляционная система воздушного отопления отличается меньшими первоначальными вложениями и эксплуатационными затратами. Система может применяться, если в помещении допускается рециркуляция воздуха, а температура поверхности нагревательных элементов соответствует требованиям гигиены, пожаро- и взрывобезопасности этого помещения. Радиус действия центральной системы с естественной циркуляцией (без вентилятора) ограничен 8—10 м, считая по горизонтальному пути от теплового центра до наиболее удаленного вертикального канала. Объясняется это незначительностью действующего естественного циркуляционного давления, составляющего даже при значительной температуре нагретого воздуха всего лишь около 2 Па на каждый метр высоты канала.

Система воздушного отопления с частичной рециркуляцией устраивается с механическим побуждением движения воздуха и является наиболее гибкой. Она может действовать в различных режимах; в помещениях помимо частичной могут осуществляться полная замена, а также полная рециркуляция воздуха. При этих трех режимах система работает как отопительно-вентиляционная, чисто вентиляционная и чисто отопительная. Все зависит от того, забирается ли и в каком количестве воздух снаружи и до какой температуры нагревается воздух в калорифере.

Прямоточная система воздушного отопления отличается самыми высокими эксплуатационными затратами. Ее применяют, когда требуется вентиляция помещений в объеме не меньшем, чем объем воздуха для отопления (например, в помещениях категорий А и Б, где выделяются вещества, взрывоопасные и пожароопасные, а также вредные для здоровья людей, обладающие неприятным запахом). Для уменьшения теплозатрат в прямоточной системе при сохранении ее основного преимущества — полной вентиляции помещений — используют схему с рекуперацией (см. рис. 19. 2, г), где применен дополнительный воздухо-воздушный теплообменник, позволяющий утилизировать часть теплоты уходящего воздуха для нагревания наружного воздуха.

 

19. 3 Количество и температура воздуха для отопления

Воздух для отопления подается в помещение нагретым до такой температуры tг чтобы в результате его смешения с внутренним воздухом и теплообмена с поверхностью ограждений поддерживалась заданная температура помещения. Следовательно, количество аккумулированной воздухом теплоты должно быть равно Qп максимальной теплопотребности для поддержания в помещении расчетной tp

Gотс(tг-tв)=Qп

Огсюда расход нагретого воздуха Оот» кг/с, для отопления помещения

                                        (19. 1)

где с — удельная массовая теплоемкость воздуха, равная 1005 Дж/(кгК).

Для получения расхода воздуха в кг/ч теплопотребность помещения в Вт (Дж/с) следует выразить в Дж/ч, т. е. умножить на 3600 с.

Объем подаваемого воздуха Lот, м3/ч, при температуре tг нагретого воздуха

Lот=Gот/Pг                                  (19. 2)

Воздухообмен Lп, м3/ч, в помещении несколько отличается от Lот, так как определяется при температуре tв внут­реннего воздуха

Lп=Gот/Pв                                   (19. 3)

где Pг и Pв — плотность воздуха, кг/м3, при его температуре tг и tв

Температура воздуха tг должна быть возможно более высокой для уменьшения, как это видно из уравнения, количества подаваемого воздуха. В связи с этим соответственно сокращаются размеры каналов, а также снижается расход электроэнергии при механическом побуждении движения воздуха.

Однако правилами гигиены устанавливается определенныи верхний предел температуры — воздух не следует нагревать выше 60 °С, чтобы он не терял своих свойств как среда, вдыхаемая людьми. Эта температура и принимается как предельная для систем воздушного отопления помещений с постоянным или длительным (более 2 ч) пребыванием людей. Отклонения от этого общего правила делают для воздушно-тепловых завес. Для завес у внешних ворот и технологических проемов, выходящих наружу, допускается повышение температуры подаваемого воздуха до 70 °С; для завес у наружных входных дверей — понижение температуры до 50 °С.

Конкретные значения температуры воздуха при воздушном отоплении связаны со способами его подачи из воздухораспределителей, а именно зависят от того, подается ли воздух вертикально сверху вниз, наклонно в направлении рабочей зоны или горизонтально в верхней зоне помещения.

В пределе, если люди подвергаются длительному непосредственному влиянию струи нагретого воздуха, температуру нагретого воздуха рекомендуется понижать до 25 °С.

По формуле (19. 1) определяютколичество воздуха, подаваемого в помещение только с целью его отопления, и систему устраивают рециркуляционной. Когда же воздушная система отопления является одновременно и системой вентиляции, количество вводимого в помещение воздуха устанавливают следующим образом:

если Gог> Gвент (количество воздуха для отопления оказывается равным количеству воздуха, необходимому для вентиляции, или превышает его), то сохраняют количество и температуру отопительного воздуха, а систему выбирают прямоточной или с частичной рециркуляцией;

если Gвент> Gот (количество вентиляционного воздуха превышает количество воздуха, которое необходимо для отопления), то принимают количество воздуха, потребное для вентиляции, систему делают прямоточной, а температуру подаваемого воздуха вычисляют по формуле полученной из уравнения (19. 1).

                              (19. 4)

 

Количество воздуха для отопления помещения или его температуру уменьшают, если в помещении имеются по­стоянные тепловыделения.

При центральной отопительно-вентиляционной системе температура нагретого воздуха, определяемая по формуле (19. 4), может оказаться для каждого помещения различной. Подача в отдельные помещения воздуха при различной температуре технически осуществима. Однако проще подавать во все помещения воздух при одинаковой температуре. Для этого общую температуру нагретого воздуха принимают равной низшей из расчетных для отдельных помещений, а количество подаваемого воздуха пересчитывают по формуле (19. 1).

После уточнения воздухообмена определяют теплозатраты на нагревание воздуха по формулам:

для рециркуляционной системы воздушного отопления

Q=Gотc(tг-tв)                                                   (19. 5)

для частично рециркуляционной отопительно-вентиля­ционной системы

Q=Gотc(tг-tв)+Gвентc(tв-tн)                              (19. 6)

для прямоточной отопительно-вентиляционной системы

Q=Gвентc(tг-tн)                                       (19. 7)

где Gот и Gвент — расход воздуха, кг/с, для целей отопления и вентиляции; tн температура наружного воздуха для проектирования отопления.

В формуле (19. 6) количество рециркуляционного возду­ха Gрец=Gот—Gвент. так как Gот выражает количество смешанного воздуха, нагретого до температуры tг. с целью отопления.

 

19. 4 Местное воздушное отопление

Местное воздушное отопление предусматривают в зданиях в следующих случаях:

в рабочее время при отсутствии центральной системы приточной вентиляции, причем система отопления может быть чисто отопительной и совмещенной с местной приточной вентиляцией;

в нерабочее время при отсутствии и невозможности или экономической нецелесообразности использования для отопления имеющейся центральной системы приточной вентиляции.

Для местного воздушного отопления применяют:

1) рециркуляционные отопительные агрегаты с. механическим побуждением движения воздуха (рис. 19. 1, a);

2) отопительно-вентиляционные агрегаты с частичной рециркуляцией воздуха и прямоточные, также с механическим побуждением движения воздуха по схемам на рис. 19. l, в, г (рассматриваются главным образом в дисциплине «Вентиляция»);

3) рециркуляционные воздухонагреватели с естественным движением воздуха (рис. 19. 1, б).

Отопительные агрегаты предназначены для отопления производственных помещений категорий В, Г и Д, технологический процесс в которых не сопровождается выделением пыли, крупных помещений общественных и сельскохозяйственных зданий. Специальные отопительно-вентиляционные агрегаты применяют для отопления жилых квартир. Рециркуляционные воздухонагреватели служат для отопления лестничных клеток многоэтажных зданий и отдельных помещений общественных зданий.

 

19. 5. Отопительные агрегаты

Отопительным агрегатом называется комплекс стандартных элементов, собираемых воедино на заводе, имеющий определенную воздушную, тепловую и электрическую мощность. Агрегаты изготовляют для установки непосредственно в отапливаемых помещениях. Они представляют собой компактное, мощное и сравнительно недорогое оборудование. Недостатком агрегатов является шум при действии вентилятора, что ограничивает возможность их применения в рабочее время.

Отопительные агрегаты подразделяются на подвесные и напольные. Подвесной отопительный агрегат представлен на рис. 19. 3. Корпус, имеющий воздухозаборное отверстие, соединен с воздухонагревателем (калорифером). Внутри корпуса находится осевой вентилятор с электродвигателем. Воздух, забираемый из помещения вентилятором, пропускается через калорифер, нагреваемый высокотемпературной водой, и выпускается снова в помещение в нужном направлении через створки регулирующего многостворчатого клапана. Агрегат снабжен кронштейнами для подвески его в помещении.

В зависимости от модели один подвесной отопительный агрегат при небольшой электрической мощности двигателя может нагревать до 20 тыс. м3/ч воздуха, тепловая мощность достигает 250 кВт. На рис. 19. 3 изображен отопительный агрегат модели АО2-4 тепловой мощностью 47, 7 кВт; воздух нагревается в пластинчатом многоходовом калорифере марки КВБ-7п. Агрегат рассчитан на подачу 4000 м3/ч (индекс «4») воздуха при температуре 51 °С, если температура входящего в него воздуха 16 °С. В агрегате установлен осевой вентилятор типа 06-300 с электродвигателем 0, 37 кВт. Скорость воздуха на выходе из агрегата 4, 4 м/с. Гидравлическое сопротивление калорифера (по теплоносителю) 2207 Па.

Рис. 19. 3. Подвесной воздушно-рециркуляционный отопительный аг­регат А02-4 (боковой вид)

1 — корпус; 2 — воэдухонагреватель; 3 — многостворчатый клапан: 4 — кронштейн; 5 — осевой вентилятор; 6 — электродвигатель

 

Рис. 19. 4. Напольный воэдушно-рециркуляционный агрегат СТД-ЗООМ

1 — электродвигатель; 2 — воздуховыпускной патрубок; 3 — воздухонагреватель; 4 — корпус; 5 — ременная передача в защитном кожухе

 

Рис. 19. 5. Схемы наклонной (а) и сосредоточенной (б) подачи нагретого воздуха отопительным агрегатом, установленным на высоте h

А — расчетная точка в рабочей зоне; В — вершина воздушной струи

 

Подобным же образом характеризуется каждый из остальных трех моделей (индексы 6, 3; 10; 20) выпускаемых подвесных отопительных агрегатов А02. Большей дальнобойностью обладают агрегаты типа АОД2 с обводным воздушным каналом над калорифером. Общим недостатком агрегатов А02 является высокий уровень звуковой мощности (88 дБА).

Подвесной отопительный агрегат другой модели СТД-З00п тепловой мощностью 349 кВт, рассчитанный на подачу 24600 м3/ч нагретого до 60°С воздуха, отличается повышенной до 10, 2 м/с скоростью выпуска воздуха.

В напольных отопительных агрегатах используют не только осевые, но и центробежные вентиляторы.

Их мощность может превышать мощность подвесных агрегатов. Воздух нагревается не только водой, но и паром, а также при сжигании газообразного топлива.

Для отопления помещения устанавливают не менее двух агрегатов, причем их тепловую мощность выбирают достаточной для поддержания температуры не ниже 5°С при выходе из строя одного из агрегатов.

При выпуске воздуха в свободное пространство крупного помещения через регулирующий многостворчатый клапан агрегата образуется так называемая компактная струя. Воздушная струя превращается в неполную веерную в том случае, когда регулирующий клапан дополняют рассеивающей решеткой.

Подачу нагретого воздуха при использовании отопитель­ных агретатов осуществляют двумя способами: наклонными струями сверху в направлении рабочей зоны (рис. 19. 5, а) или горизонтальными струями выше рабочей зоны (рис. 19. 5, б). Наклонной подаче отдается предпочтение, так как нагретый воздух попадает непосредственно в рабочую зону. Для этого воздух выпускается под углом 35° к горизонту, что обеспечивает наибольшую дальнобойность нагретых струй.

Горизонтальную подачу, получившую названиесосредоточенной, применяют, когда при наклонной подаче температура и скорость движения воздуха в рабочей зоне (в точке А на рис. 19. 5, а) превышают допустимые значения. Агрегаты для горизонтальной (или под малым углом к горизонту, как показано на рис. 19. 5, б) подачи помещают на высоте от пола h=(0, 35—0, 65) Нп, т. е. в средней зоне по высоте помещения. Воздушные струи при этом получаются ненастилающимися (настилаются они на потолок при h> 0, 85 Нп, и это в высоких помещениях вызывает перегревание верхней зоны).

При сосредоточенной подаче под воздушной струёй в нижней части помещения возникает обратный поток воздуха. В месте, где расширяющаяся воздушная струя наиболее близко проходит своей нижней границей к рабочей зоне, обратный поток движется с максимальной скоростью. В этом месте (точка A на рис. 19. 5, б) и проверяют допустимость получающихся значений скорости движения и температуры воздуха.

В крупных помещениях отопительные агрегаты размещают так, чтобы получалось несколько параллельных компактных или неполных веерных воздушных струй. При параллельных компактных струях (рис. 19. 6, а) агрегаты располагают на расстоянии b< 3Нп (Нпвысота помещения), при неполных веерных струях—до 10 Нп (рис. 19. 6. б). В плане агрегаты устанавливают с учетом расположения колонн и крупногабаритного оборудования, которые могут нарушать свободное развитие воздушных струй в помещении.

Выбор моделиотопительных агрегатов для крупных помещений делают в предположении, что будет принята наклонная подача воздуха, исходя из длины l, м, зоны обслу­живания одним агрегатом, рекомендуемой в справочной литературе (например, для модели АО2-4 l=9—12 м). Предварительно принимая ширину этой зоны b=l, сопоставляют теплопотери обслуживаемой части помещения (с повышающим коэффициентом 1, 10) с тепловой мощностью агрегатов. Выбрав окончательно модель агрегата, уточняют объем части помещения, приходящийся на один агрегат, и число агрегатов.

При наклонной подаче воздуха допустимо получение размера b=(0, 5—2, 0) l.

Экономически выгоднее применять укрупненные отопительные агрегаты. При использовании крупных отопительных агрегатов температура воздуха в помещении может остаться довольно равномерной (отличие в верхней зоне от расчетной в рабочей зоне не более чем на 2—3 °С допустимо во многих производственных зданиях), особенно если там обеспечивается 2—3-кратный воздухообмен.


Рис. 19. 6. Схемы расположения отопительных агрегатов в плане помещения при параллельных воздушных струях (о) и при неполных веерных воздушных струях (б)

 

 

Преимущества воздушно-отопительных агрегатов А чем, собственно, эти устройства лучше обычных электрических конвекторов или разводки водяных радиаторов по помещению? Скоростью нагрева помещения. Принудительный обдув теплообменника отберет у него гораздо больше тепла, чем конвекционные потоки. Равномерностью распределения тепла. Заслонки позволяют направить поток горячего воздуха в любом направлении. Конвекционные потоки поднимаются только вверх, в результате чего все тепло в помещении собирается под потолком. Экономичностью на фоне конвекционного отопления, вытекающей из того же равномерного распределения тепла. Чтобы температура внизу склада с 10-метровыми потолками достигла приемлемых — 16-18С, под потолком должно быть как минимум 30. При этом большая часть производимого тепла будет бесполезно рассеиваться через крышу.

Скоростью монтажа. Водяному воздушно-отопительному агрегату требуется всего две трубы: подача и обратка. Развести по большому помещению трубы и подключить к ним отопительные приборы будет явно и сложнее, и дольше.

Особенности монтажа и эксплуатации Что полезно знать об этих устройствах? Практически все воздушно — отопительные электрические агрегаты имеют мощность больше 7 КВт. Они запитываются исключительно от 380 вольт. Подключить их своими руками может любой электрик с соответствующим допуском. Сечение проводки для подключения лучше рассчитывать, исходя из 8 ампер на один квадратный миллиметр. К примеру, устройство, потребляющее 24 киловатта, требует минимального сечения проводки 24000/380/8=7, 89 мм2. Водяные воздушно-отопительные приборы подключаются только и исключительно стальными трубами. Желательно-оцинкованными: тогда вы не столкнетесь с проблемами коррозии и зарастания отложениями. Металлопластик и полимерные трубы не рассчитаны на перегретую воду с температурой 150-180 градусов. Здесь использована гибкая труба из нержавеющей стали. При настенном монтаже нужно обеспечить свободный приток воздуха со стороны стены, оставив между ней и агрегатом расстояние не меньше 300 миллиметров. Запрещено использование электрических нагревательных установок на территории складов, использующихся для хранения летучих, агрессивных и взрывоопасных веществ. Токопроводящая пыль (к примеру, графит или мелкие опилки при металлобработке) тоже опасны.

Для всех типов тепловентиляторных установок рекомендуется установка воздушного фильтра грубой очистки (если, конечно, он не является частью конструкции самого агрегата). Причина понятна: заклиненный любым посторонним предметом вентилятор в лучшем случае просто сгорит вследствие перегрева обмотки двигателя. В худшем же случае вслед за ним на свалку отправятся нагревательные элементы устройства


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...