ЛС в зависимости от назначения и технических решений могут иметь различные конфигурации (или, как еще говорят, архитектуру, или топологию).
⇐ ПредыдущаяСтр 2 из 2 В кольцевой ЛС информация передается по замкнутому каналу. Каждый абонент непосредственно связан с двумя ближайшими соседями, хотя в принципе способен связаться с любым абонентом сети. В звездообразной ( радиальной) ЛС в центре находится центральный управляющий компьютер, последовательно связывающийся с абонентами и связывающий их друг с другом. В шинной конфигурации компьютеры подключены к общему для них каналу (шине), через который могут обмениваться сообщениями. В древовидной - существует «главный» компьютер, которому подчинены компьютеры следующего уровня, и т.д. Кроме того, возможны конфигурации без отчетливого характера связей; пределом является полносвязная конфигурация, когда каждый компьютер в сети непосредственно связан с любым другим компьютером. В крупных ЛС предприятий и учреждений чаще всего используется шинная (линейная) топология, соответствующая архитектуре многих административных зданий, имеющих длинные коридоры и кабинеты сотрудников вдоль них. Для учебных целей в КУВТ чаще всего используют кольцевые и звездообразные ЛС. В любой физической конфигурации поддержка доступа от одного компьютера к другому, наличие или отсутствие выделенного компьютера (в составе КУВТ его называют «учительским», а остальные – ученические- выполняется программой - сетевой операционной системой, которая по отношению к ОС отдельных компьютеров является надстройкой. Для современных высокоразвитых ОС персональных компьютеров вполне характерно наличие сетевых возможностей (например, О8/2, ШШО\У5'95-98). Процесс передачи данных по сети определяют шесть компонент: • компьютер-источник;
• передатчик; • физическая кабельная сеть; • приемник; • компьютер-адресат. Компьютер-источник может быть рабочей станцией, файл-сервером, шлюзом или любым компьютером, подключенным к сети. Блок протокола состоит из набора микросхем и программного драйвера для платы сетевого интерфейса. Блок протокола отвечает за логику передачи по сети. Передатчик посылает электрический сигнал через физическую топологическую схему. Приемник распознает и принимает сигнал, передающийся по сети, и направляет его для преобразования в блок протокола. Как показано на рис. 5.2, цикл передачи данных начинается с компьютера-источника, передающего исходные данные в блок протокола. Блок протокола организует данные в пакет передачи, содержащий соответствующий запрос к обслуживающим устройствам, информацию по обработке запроса (включая, если необходимо, адрес получателя) и исходные данные для передачи. Пакет затем направляется в передатчик для преобразования в сетевой сигнал. Пакет распространяется по сетевому кабелю пока не попадает в приемник, где перекодируется в данные. Здесь управление переходит к блоку протокола, который проверяет данные на сбойность, передает «квитанцию» о приеме пакета источнику, переформировывает пакеты и передает их в компьютер-адресат. В ходе процесса передачи блок протокола управляет логикой передачи по сети через схему доступа. Каждая сетевая ОС использует определенную стратегию доступа от одного компьютера к другому. Широко используются маркерные методы доступа (называемые также селективной передачей), когда компьютер-абонент получает от центрального компьютера сети, так называемый, маркер - сигнал на право ведения передачи в течение определенного времени, после чего маркер передается другому абоненту При конкурентном методе доступа абонент начинает передачу данных, если обнаруживает свободной линию, или откладывает передачу на некоторый промежуток-времени, если линия занята другим абонентом. При другом способе - резервировании времени - у каждого абонента есть определенный промежуток, в течение которого линия принадлежит только ему.
Наиболее часто применяются две основные схемы: • конкурентная (Еергшщз879+); • с маркерным доступом (Токеп Клп§, Агспег). Ведутся дебаты о том, какая схема более эффективна - конкурентная или с маркерным доступом. Сети с маркерным доступом обычно более медленные, но обладают более предсказуемыми свойствами, чем конкурентные. По мере роста числа пользователей у сетей с маркерным доступом параметры ухудшаются медленнее, чем у конкурентных сетей. Эффективность сети зависит от величины потока сообщений, который необязательно связан с числом активных рабочих станций. При конкурентной схеме, когда много рабочих станций одновременно пытаются переслать данные, возникают наложения. Таким образом, если большая часть обработки данных в сети выполняется локально (например, если рабочие станции заняты, главным образом, локальной подготовкой текстов), эффективность сети будет высокой, даже если к сети подключено много пользователей. При схеме с маркерным доступом эффективность непосредственно определяется числом активных рабочих станций, а не полным потоком сообщений, передаваемых по сети. Каждый дополнительный пользователь добавляет еще один адрес, по которому будет передан маркер независимо от того, нуждается или нет рабочая станция в пересылке сообщения. Сеть Е1Негпе(: использует для управления передачей данных по сети конкурентную схему. Элементы сети Е1пегпе1 могут быть соединены по шинной или звездной топологии с использованием витых пар, коаксиальных или волоконно-оптических кабелей. Основным преимуществом сетей Е1пегпе1 является их быстродействие. Обладая скоростью передачи от 10 до 100 Мбит/с, Е1пегпе1 является одной из самых быстрых среди существующих локальных сетей. Однако такое быстродействие, в свою очередь, вызывает определенные проблемы: из-за того, что предельные возможности тонкого медного кабеля лишь незначительно превышают указанную скорость передачи в 10 Мбит/с, даже небольшие электромагнитные помехи могут значительно ухудшить производительность сети.
Как показывает их наименование, сети 1ВМ Токеп Кш§ используют для передачи данных схему с маркерным доступом. Сеть Токеп Кш§ физически выполнена по схеме «звезда», но ведет себя как кольцевая. Другими словами, пакеты данных передаются с одной рабочей станции на другую последовательно (как в кольцевой сети), но постоянно проходят через центральный компьютер (как в, сетях типа «звезда»). Сети Токеп К.1п«могут осуществлять передачу как по незащищенным и защищенным витым проводным парам, так и по волоконно-оптическим кабелям. Сети Токеп Шп§ существуют в двух версиях, со скоростью передачи в 4 или 16 Мбит/с. Однако, хотя отдельные сети работают на скоростях либо 4, либо 16 Мбит/с, возможно соединение через мосты сетей с разными скоростями передачи. Сети То1сеп КЛп§ надежны, обладают высокой скоростью (особенно версия со скоростью передачи 16 Мбит/с) и просты для установки. Однако по сравнению с сетями АК.Спе1 сети Токеп Кш^ дороги. Сеть АКСпе(использует схему с маркерным доступом и может работать как в шинной, так и в звездной топологии. Схема «звезда» обычно обеспечивает лучшую производительность, так как при этой топологии возникает меньше конфликтов при передаче. АК.Спе1 совместима с коаксиальными кабелями, витыми пар'ами и волоконно-оптическими кабелями. Системы АИСпе{ являются сравнительно медленными. Передача осуществляется на скорости лишь 2,5 Мбит/с, что значительно меньше, чем в других типах сетей. Несмотря на малое быстродействие, АК.Спе1 сохраняет свою популярность. Ее малая скорость передачи является в своем роде компенсацией за эффективный метод передачи сигналов. АКСпе1 - сравнительно недорогая и гибкая система, которая легко устанавливается, расширяется и подвергается изменению конфигурации. Правила организации передачи данных в сети называют протоколом. Определенный протокол поддерживается как аппаратно (адаптерами сети), так и программно (сетевой ОС).
В ЛС данные передаются от одного компьютера к другому блоками, которые называют пакетами данных. Станция, передающая пакет данных, обычно указывает в его заголовке адрес назначения данных и свой собственный адрес. Пакеты могут передаваться между рабочими станциями без подтверждения - это тип связи на уровне датаграмм. Проверка правильности передачи пакетов в этом случае выполняется сетевой ОС, которая может сама посылать пакеты, подтверждающие правильную передачу данных. Важное преимущество датаграмм - возможность посылки пакетов сразу всем станциям в сети. Например, протокол передачи данных 1РХ (от слов «1п1егпе1\уогк Рас1се1 ЕхсЬап§е»,' что означает «межсетевой обмен пакетами») используется в сетевом программном обеспечении фирмы «КоуеП» и является реализацией датаграмм. Другой пример - разработанный фирмой 1ВМ протокол КЕТВЮ5, также получивший большую известность, тоже работает на уровне датаграмм. Сетевой адрес состоит из нескольких компонентов: • номера сети; • адреса станции в сети; • идентификатора программы на рабочей станции. Номер сети - это номер сегмента сети (кабельного хозяйства), определяемого системным администратором при установке сетевой ОС. Адрес станции - это число, являющееся уникальным для каждой рабочей станции. Уникальность адресов при использовании адаптеров Е1пегпе1 обеспечивается заводом-изготовителем плат (адрес станции записывается в микросхеме ПЗУ адаптера). На адаптерах АгсКе{ адрес станции устанавливается при помощи перемычек или микропереключателей. Идентификатор программы на рабочей станции называется сокет. Это - число, которое используется для адресации пакетов в конкретной программе, работающей на станции под управлением многозадачной операционной системы (типа №гии1о'н>5, О8/2). Каждая программа для того, чтобы посылать или получать данные по сети, должна получить свой, уникальный для данной рабочей станции, идентификатор - сокет.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|