Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Байты трактового заголовка

Министерство РФ по связи и информатизации

Уральский Государственный Технический Университет - УПИ

Кафедра "ТиСС"

Отчет

По производственной практике

На ОАО «ЕГУЭС Уралтелеком»

Руководитель практики от предприятия:

Руководитель практики от УГТУ-УПИ:

Время прохождения: с 5 августа по 15 сентября 2002 г.

Студент: Черепанов К.А

Группа: Р-407

Екатеринбург

2002


Содержание:

Список сокращений........................................................................................................................................................................... 3

Предыстория SDH................................................................................................................................................................................... 5

Сети SDH......................................................................................................................................................................................................... 6

Цикл SDH......................................................................................................................................................................................................... 7

Структура цикла................................................................................................................................................................................... 7

Мультиплексирование................................................................................................................................................................... 7

Анализ заголовка................................................................................................................................................................................. 8

Трактовый заголовок............................................................................................................................................................................ 8

Байты трактового заголовка........................................................................................................................................................... 9

Мультиплексорный заголовок.......................................................................................................................................................... 9

Байты заголовка мультиплексорной секции................................................................................................................................. 9

Заголовок регенерационной секции............................................................................................................................................ 10

Байты заголовка регенерационной секции.................................................................................................................................. 10

Анализ полезной нагрузки........................................................................................................................................................ 10

Указатели полезной нагрузки............................................................................................................................................... 10

Компонентные блоки и структурная схема мультиплексирования сигнала SDH.............. 11

Управление сетью............................................................................................................................................................................ 12

 

Список сокращений

Русские сокращения.

АТС Автоматическая телефонная станция
ВОСП Волоконно-оптическая система передачи
ИКМ Импульсно-кодовая модуляция
ИКМ-30 Сокращение, используемое для обозначения потока Е1 с цикловой и сверхцикловой структурой
ИКМ-31 Сокращение, используемое для обозначения потока Е1 с цикловой структурой
ЛАЦ Линейно-аппаратный цех (иногда применяется ЛАЗ - линейно-аппаратный зал)
МВВ Мультиплексор ввода/вывода
МККТТ Международный комитет по телефонии и телеграфии
МСЭ Международный союз электросвязи
МСЭ-Т Международный комитет по телефонии и телеграфии (новое название)
ОКС 7 Система сигнализации по ОКС №7
ОЦК Общий цифровой канал (канал 64 кбит/с)
ПД Передача данных
ПО Программное обеспечение
ПСП Псевдослучайная двоичная последовательность
рек. Рекомендация
РРЛ Радиорелейная линия связи
ССС Спутниковая система связи
ТЧ Канал тональной частоты
УПАТС Учрежденческая производственная АТС

Иностранные сокращения.

ADM &nbspAda-Drop Multiplexor Мультиплексор ввода/вывода - МВВ
ANSI &nbspAmerican National Standard Institute Американский национальный институт стандартов
APS &nbspAutomatic Protection Switching &nbspАвтоматическое переключение
ATM &nbspAsynchronous Transfer Mode &nbspРежим асинхронной передачи
AD Administrative Unit Административный блок
AUG &nbspAdministrative Unit Group &nbspГруппа административных блоков
AU-PJE &nbspAU Pointer Justification Event Смещение указателя AU
BBE &nbspBackground block error Блок с фоновой ошибкой
BBER Background block error rate Коэффициент ошибок по блокам с фоновыми ошибками
BER &nbspBit Error Rate Параметр ошибки по битам, равен отношению количества ошибочных битов к общему количеству переданных
BIN &nbspBinary Двоичное представление данных
BIP Bit Interleaved Parity Метод контроля четности
B-ISDN Broadband Integrated Service Digital &nbspШирокополосная цифровая сеть с интеграцией Networks служб (Ш-ЦСИС)
CRC Cyclic Redundancy Check Циклическая проверка по избыточности
CRC ERR CRC errors Число ошибок CRC
DEMUX Demultiplexer Демультиплексор
ETS European Telecommunication Standard Европейский телекоммуникационный стандарт
ETSI European Telecommunication Standard Institute Европейский институт стандартизации в теле-kоммуникациях, протокол ISDN, стандартизированный ETSI
FEBE Far End Block Error Наличие блоковой ошибки на удаленном конце
FERF Far End Receive Failure Наличие неисправности на удаленном конце
HEX Hexagonal 16-ричное представление информации
НО-РОН High-order POH Заголовок маршрута высокого уровня
ISDN Integrated Service Digital Networks Цифровая сеть с интеграцией служб (ЦСИС)
ITU International Telecommunication Union Международный Союз Электросвязи
ITU-T International Telecommunication Union-Telephony group Международный Союз Электросвязи подразделение телефонии
LO-POH Low-order POH Заголовок маршрута низкого уровня
M1, М2 Management Interface 1, 2 Интерфейсы управления
MSOH Multiplexer Section Overhead Заголовок мультиплексорной секции
MSP Multiplex Section Protection Цепь резервирования мультиплексорной секции
MUX Multiplexer Мультиплексор
OSI Open System Interconnection Эталонная модель взаимодействия открытых систем
РОН Path Overhead Заголовок маршрута
PTR Pointer Указатель в системе SDH
RGEN, REG Regenerator Регенератор
RSOH Regenerative Section Overhead Заголовок регенераторной секции
SDH Synchronous Digital Hierarchy Синхронная цифровая иерархия
SDXC Synchronous Digital Cross Connect Синхронный цифровой коммутатор
SOH Section Overhead Секционный заголовок
STM Synchronous Transport Module Синхронный транспортный модуль - стандартный цифровой канал в системе SDH
ТСМ Tandem Connection Monitoring Мониторинг взаимного соединения
ТМ Traffic Management Управление графиком
TMN Telecommunications Management Автоматизированная система управления связью
TU Tributary Unit Блок нагрузки
TUG Tributary Unit Group Группа блоков нагрузки
VC Virtual Container Виртуальный контейнер

 

 

Предыстория SDH

SDH (SONET- североамериканский аналог)– это стнадарт для ‘высокоскоростных-высокопроизводительных’ оптических сетей связи; более известный, как синхронная цифровая иерархия (S ynchronous D igital H ierarchy, S ynchronous O ptical NET work), предназначенный для обеспечения простой, экономичной и гибкой инфраструктуры сети связи.

До SDH имела место плезиохронная цифровая иерархия или PDH (P lesiochronous D igital H ierarchy), в стуктуре сигнала которой не было места для сигналов управления и обслуживания сети.

Рис1.1                                                                              Рис1.2

Сети передачи PDH с высокой пропусконой способностью основаны иерархии цифровых мультиплексированных сигналов от Е.1 до Е.4.

Базовый блок – первичная скорость 2048 Мб/с (Е.1) может состоять из 30 каналов ТЧ по 64 кб/с. Эти блоки можно объединить и передавать с более высокой скоростью по высокоскоростным системам передачи. Четыре сигнала первичной скорости могут быть мультиплексированы до вторичной скорости Е.2 8448 Мб/с и так далее до скорости 139 Мб/с (Е.4). Таким образом, скорость 139 Мб/с представляет 64*2048Мб/с сигналов или 1920 мультиплексированных каналов ТЧ.

Однако, до SDH не имелось никаких стандартов, которые гарантировали бы работу обрудования производителей в одной системе, более того, в плезиохронной сети обращение к одному индивидуальному компоненту требует демультиплексирования всего сигнала, следовательно, затраты повышаются из-за демультиплексирования и они удваиваются, потому что встает необходимость повторно мультиплексировать сигнал.

Острая необходимость в стандартизации синхронных волоконно-оптических сетей была осознана, лишь когда стали ясны преимущества этих сетей перед плезиохронными и полным ходом шли разработка и внедрение оборудования для них. Телекоммуникационные операторы ощутили это первыми. Попытки состыковать оборудование разных производителей к положительному результату не привели. В начале 1984 г. в США состоялся Форум по совместимости систем передачи, который обратился в Американский национальный институт стандартов (ANSI) с просьбой о скорейшем принятии спецификаций синхронной передачи по волоконно-оптическим сетям. Цель данной стандартизации - сопряжение оборудования различных производителей на уровне оптических интерфейсов.

Задача была поставлена перед двумя комитетами ANSI: T1X1, занимающимся цифровой иерархией и синхронизацией, и T1M1, решающим вопросы сетевого администрирования и эксплуатации. В результате проделанной этими комитетами работы родился черновой вариант стандарта под названием SYNTRAN, основывающийся на скорости передачи 45 Mбит/с. Однако время шло, и производители создали новые системы. Компания АТ&T, применив самые новейшие технологии, произвела на свет систему METROBUS, скорость передачи которой составляла уже 150 Мбит/с. В 1985 г. комитет T1X1 по предложению компании Bellcore принял решение сформулировать стандарт, базирующийся на концепции синхронной сети как единого целого (SONET, Synchronous Optical NETwork), который будет определять наряду с оптическим интерфейсом формат сигнала и скорость его передачи.

На этом этапе стандартизации европейские институты не проявляли большого интереса к SONET. Исторически сложилось так, что иерархии скоростей передачи в США и Европе основывались на различных базовых скоростях сигналов - Т1 (1,544 Мбит/с) и Е1 (2,048 Мбит/с) соответственно. Чтобы избежать углубления этой пропасти, требовалось участие Европы в развитии стандартов синхронной передачи. Однако заинтересовать Европу можно было лишь возможностью поддержки стандартом SONET 2-мегабитной иерархии.

Летом 1986 г. МККТТ(в настоящее время комитет T в МСЭ, или ITU-T) наконец решил навести порядок, создав единый стандарт, который удовлетворил бы обе стороны, т. е. поддерживал бы как европейскую, так и американскую иерархии. В июле 1986 г. рабочая группа XVII МККТТ начала работу над новым стандартом синхронной цифровой иерархии (SDH). Полтора года ушло на согласование рекомендаций. В феврале 1988 г. комитет T1X1 принял предложения МККТТ по изменению стандарта SONET. Рабочая группа XVIII утвердила три рекомендации, относящиеся к SDH, которые были опубликованы в "Синей книге":

G.707. - базовые скорости SDH;

G.708. - сетевой интерфейс узла SDH;

G.709. - структура синхронного мультиплексирования.

Именно эти рекомендации положили начало процессу стандартизации систем SDH на более детальном уровне, который продолжается и по сей день.

       Таким образом, переход от PDH к SDH решал ряд немаловажных проблем, а именно:

ü Упрощение схемы построения и развития сети. Упрощение структурной схемы сети и сокращение числа требуемого оборудования стали возможными благодаря тому, что SDH-мультиплексор заменил собой по функциональным возможностям стойку мультиплексоров PDH. Плезиохронный мультиплексор демультиплексировал поток для выведения нескольких компонентных сигналов, а затем мультиплексировал весь набор компонентных сигналов снова. SDH-мультиплексор выделяет требуемые компонентные сигналы, не разбирая весь поток. Оборудования нужно меньше, требования к питанию снижаются, площади освобождаются, затраты на эксплуатацию уменьшаются.

ü Высокая надежность сети. Централизованное управление сетью обеспечивает полный мониторинг состояния каналов и узлов (мультиплексоров). Использование кольцевых топологий предоставляет возможность автоматической перемаршрутизации каналов при любых аварийных ситуациях на резервный путь.

ü Полный программный контроль. Управление конфигурацией сети, отслеживание и регистрация аварийных ситуаций осуществляются программными средствами с единой консоли управления. В функции центральной управляющей системы входят также средства поддержки тестирования каналов и контроля за качеством работы основных блоков мультиплексоров.

ü Предоставление услуг по требованию. Создание новых или перемаршрутизация старых каналов пользователя - вопрос одного часа.

ü "Высокий уровень" стандартизации SDH-технологии позволяет использовать оборудование разных фирм-производителей в одной сети.

Благодаря перечисленным преимуществам SDH стала технологией N 1 для создания транспортной сети.

Сети SDH

SDH модет использоваться во всех традиционных областях примения сетей. Только инфраструктура сети SDH обесчпечивает эффективное прямое взаимодействие между треммя главными видами сетей:

ü Локальная сеть

ü Сеть кольцевой стуктуры

ü Магистральная сеть

Самый низки уровень сигнала назван «Синхронный Транспортный Модуль» первого уровня или STM-1, имеющий скорость 155 Мб/с. Сигналы более высокого уровня получаются мультиплексированием с «чередованием байтов» сигналов низшего уровня. Линейная скорость более высокого уровня STM-N сигнала равна произведению N на 155.52 Мбит/с, т.е. линейную скорость сигнала самого низкого уровня.

Синхронный транспортный модуль Линейная скорость (Мбит/с)
STM-1 155,52
STM-4 622,08
STM-16 2488,32

Цикл SDH

       SDH сигнал транспортируется, как синхронная структура, которая включает набор байтов (по 8 бит), организованныйх как двухмерный массив – синхронный транспортный цикл.

       Цикл SDH состоит из 2-х частей:

1. Секционный заголовок (SOH=RSOH+MSOH) – область сигнала, которая обеспечивается в каждом цикле SDH для выполнения функций, поддерживающих и обслуживающих транспортировку «виртуальных контейнеров» между смежными узлами сети

2. Виртуальный контейнер(VC+POH) – включает “контейнерную” область, которая несет траффик клиента – полезную нагрузку, и трактовый заголовок РОН

 

 

Байты в цикле передаются слева-> направо, сверху ->вниз, т.е цикл передается как последовательность 9 строк.

-->

Структура цикла

Цикл SDH можно представить как двухмерный массив из N-строк и M-столбцов ячеек, каждая из которых – отдельный байт синхронного сигнала. Идентичность каждого байта известна, и сохраняется относительно байтов цикловой синнхронизации, известных как А1 и А2, расположенных в самом начале массива и обеспечивающих точку отсчета, от которой определяются все остальные байты.

Для сигнала STM-1: N=9 M=270.

Расчет базовой скорости SDH производится следующим образом:

V=N (строк)*M(столбцов)*8 бит (размер ячейки)* 8000циклов/с*=155,52 Мюит/с

*-согласно теории Найквиста (удвоенная самая высокая частота канала ТЧ 4кГц)

Мультиплексирование

       Более высокие скорости SDH формируютя процессом мультиплексирования сигналов более низкого уровня, таким образом, четыре параллельных и синхронных сигнала STM-1, могт быть объединены вместе методом «чередования байт», чтобы сформировать сигнал STM-4 со скоростью 4* STM-1.

       STM-4 сигнал имеет 9 рядов, но уже 1800 колонок, следовательно,

SDН скорость=9 рядов*1800 колонок*8бит*8000циклов/с=622,08Мбит/с.

       Двухмерное представление сигнала STM-4 составляется из индивидуальных колонок от каждой из четырех STM-1 сигнальных структур и чередованием их в повторяющейся последовательности.

       Полная структура STM-4 составляется следующим образом:

ü Первые 36 колонок цикла STM-4 образуют заголовок секции.

ü Остальные 1044 колонки представляют 4 области полезной нагрузки, связанные с четырьмя STM-1

Анализ заголовка

Для управления и обслуживания, сеть SDH может быть представлена в виде трех отдельных участков:

       Заголовок внутри SDH сигнала поддерживает обслуживание сети на уровнях тракта и секции. Заголовок секции (SOH) содержит заголовки регенерационной (RSOH) и мультиплексорной (MSOH) секций. Трактовый заголовок расположен в виртуальном контейнере (VC-4) в пределах STM-1.

 

Трактовый заголовок

Функции:

1. Сообщение трассы тракта

2. Контроль четности

3. Структура виртуальног контейнера

4. Тревожная сигнализации и информация о характеристиках

5. Пользовательский канал

6. Индикация сверхцикла для TU (компонентных блоков)

7. Защитное переключение трактов

Байты трактового заголовка

J1 - 16-ти или 64х байтное сообщение о маршруте тракта поддерживает непрерывную проверку между любой точкой тракта и точкой начала тракта

В3 – (побитовый контроль четности) – выполняет функцию контроля трактовых ошибок.

С2 – указыват структуру виртуального контейнера, посредством метки, выбранной из 256 возможных значений. Эта информационная структура указывает, какие полезные нагрузки размещены в пределах виртуального контейнера.

G1 – сообщение о состоянии наблюдаемых характеристик от приемного оборудования тракта к передающему.

F2 – байт оператора тракта

Н4 – индикация фазы сверхцикла TU  полезных нашрузок

F3 – байт канала пользователя

К3 – обеспечение защиты на уровне тракта, переключение на индивидуальные тракты VC-4

N1 – сквозной контроль характеристики транзитной связи.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...