Байты трактового заголовка
Министерство РФ по связи и информатизации Уральский Государственный Технический Университет - УПИ Кафедра "ТиСС" Отчет По производственной практике На ОАО «ЕГУЭС Уралтелеком» Руководитель практики от предприятия: Руководитель практики от УГТУ-УПИ: Время прохождения: с 5 августа по 15 сентября 2002 г. Студент: Черепанов К.А Группа: Р-407 Екатеринбург 2002 Содержание: Список сокращений........................................................................................................................................................................... 3 Предыстория SDH................................................................................................................................................................................... 5 Сети SDH......................................................................................................................................................................................................... 6 Цикл SDH......................................................................................................................................................................................................... 7 Структура цикла................................................................................................................................................................................... 7 Мультиплексирование................................................................................................................................................................... 7 Анализ заголовка................................................................................................................................................................................. 8 Трактовый заголовок............................................................................................................................................................................ 8 Байты трактового заголовка........................................................................................................................................................... 9 Мультиплексорный заголовок.......................................................................................................................................................... 9
Байты заголовка мультиплексорной секции................................................................................................................................. 9 Заголовок регенерационной секции............................................................................................................................................ 10 Байты заголовка регенерационной секции.................................................................................................................................. 10 Анализ полезной нагрузки........................................................................................................................................................ 10 Указатели полезной нагрузки............................................................................................................................................... 10 Компонентные блоки и структурная схема мультиплексирования сигнала SDH.............. 11 Управление сетью............................................................................................................................................................................ 12
Список сокращений Русские сокращения. АТС Автоматическая телефонная станция Иностранные сокращения. ADM  Ada-Drop Multiplexor Мультиплексор ввода/вывода - МВВ
Предыстория SDH SDH (SONET- североамериканский аналог)– это стнадарт для ‘высокоскоростных-высокопроизводительных’ оптических сетей связи; более известный, как синхронная цифровая иерархия (S ynchronous D igital H ierarchy, S ynchronous O ptical NET work), предназначенный для обеспечения простой, экономичной и гибкой инфраструктуры сети связи. До SDH имела место плезиохронная цифровая иерархия или PDH (P lesiochronous D igital H ierarchy), в стуктуре сигнала которой не было места для сигналов управления и обслуживания сети.
Рис1.1 Рис1.2 Сети передачи PDH с высокой пропусконой способностью основаны иерархии цифровых мультиплексированных сигналов от Е.1 до Е.4. Базовый блок – первичная скорость 2048 Мб/с (Е.1) может состоять из 30 каналов ТЧ по 64 кб/с. Эти блоки можно объединить и передавать с более высокой скоростью по высокоскоростным системам передачи. Четыре сигнала первичной скорости могут быть мультиплексированы до вторичной скорости Е.2 8448 Мб/с и так далее до скорости 139 Мб/с (Е.4). Таким образом, скорость 139 Мб/с представляет 64*2048Мб/с сигналов или 1920 мультиплексированных каналов ТЧ. Однако, до SDH не имелось никаких стандартов, которые гарантировали бы работу обрудования производителей в одной системе, более того, в плезиохронной сети обращение к одному индивидуальному компоненту требует демультиплексирования всего сигнала, следовательно, затраты повышаются из-за демультиплексирования и они удваиваются, потому что встает необходимость повторно мультиплексировать сигнал. Острая необходимость в стандартизации синхронных волоконно-оптических сетей была осознана, лишь когда стали ясны преимущества этих сетей перед плезиохронными и полным ходом шли разработка и внедрение оборудования для них. Телекоммуникационные операторы ощутили это первыми. Попытки состыковать оборудование разных производителей к положительному результату не привели. В начале 1984 г. в США состоялся Форум по совместимости систем передачи, который обратился в Американский национальный институт стандартов (ANSI) с просьбой о скорейшем принятии спецификаций синхронной передачи по волоконно-оптическим сетям. Цель данной стандартизации - сопряжение оборудования различных производителей на уровне оптических интерфейсов.
Задача была поставлена перед двумя комитетами ANSI: T1X1, занимающимся цифровой иерархией и синхронизацией, и T1M1, решающим вопросы сетевого администрирования и эксплуатации. В результате проделанной этими комитетами работы родился черновой вариант стандарта под названием SYNTRAN, основывающийся на скорости передачи 45 Mбит/с. Однако время шло, и производители создали новые системы. Компания АТ&T, применив самые новейшие технологии, произвела на свет систему METROBUS, скорость передачи которой составляла уже 150 Мбит/с. В 1985 г. комитет T1X1 по предложению компании Bellcore принял решение сформулировать стандарт, базирующийся на концепции синхронной сети как единого целого (SONET, Synchronous Optical NETwork), который будет определять наряду с оптическим интерфейсом формат сигнала и скорость его передачи. На этом этапе стандартизации европейские институты не проявляли большого интереса к SONET. Исторически сложилось так, что иерархии скоростей передачи в США и Европе основывались на различных базовых скоростях сигналов - Т1 (1,544 Мбит/с) и Е1 (2,048 Мбит/с) соответственно. Чтобы избежать углубления этой пропасти, требовалось участие Европы в развитии стандартов синхронной передачи. Однако заинтересовать Европу можно было лишь возможностью поддержки стандартом SONET 2-мегабитной иерархии. Летом 1986 г. МККТТ(в настоящее время комитет T в МСЭ, или ITU-T) наконец решил навести порядок, создав единый стандарт, который удовлетворил бы обе стороны, т. е. поддерживал бы как европейскую, так и американскую иерархии. В июле 1986 г. рабочая группа XVII МККТТ начала работу над новым стандартом синхронной цифровой иерархии (SDH). Полтора года ушло на согласование рекомендаций. В феврале 1988 г. комитет T1X1 принял предложения МККТТ по изменению стандарта SONET. Рабочая группа XVIII утвердила три рекомендации, относящиеся к SDH, которые были опубликованы в "Синей книге": G.707. - базовые скорости SDH; G.708. - сетевой интерфейс узла SDH; G.709. - структура синхронного мультиплексирования. Именно эти рекомендации положили начало процессу стандартизации систем SDH на более детальном уровне, который продолжается и по сей день. Таким образом, переход от PDH к SDH решал ряд немаловажных проблем, а именно:
ü Упрощение схемы построения и развития сети. Упрощение структурной схемы сети и сокращение числа требуемого оборудования стали возможными благодаря тому, что SDH-мультиплексор заменил собой по функциональным возможностям стойку мультиплексоров PDH. Плезиохронный мультиплексор демультиплексировал поток для выведения нескольких компонентных сигналов, а затем мультиплексировал весь набор компонентных сигналов снова. SDH-мультиплексор выделяет требуемые компонентные сигналы, не разбирая весь поток. Оборудования нужно меньше, требования к питанию снижаются, площади освобождаются, затраты на эксплуатацию уменьшаются. ü Высокая надежность сети. Централизованное управление сетью обеспечивает полный мониторинг состояния каналов и узлов (мультиплексоров). Использование кольцевых топологий предоставляет возможность автоматической перемаршрутизации каналов при любых аварийных ситуациях на резервный путь. ü Полный программный контроль. Управление конфигурацией сети, отслеживание и регистрация аварийных ситуаций осуществляются программными средствами с единой консоли управления. В функции центральной управляющей системы входят также средства поддержки тестирования каналов и контроля за качеством работы основных блоков мультиплексоров. ü Предоставление услуг по требованию. Создание новых или перемаршрутизация старых каналов пользователя - вопрос одного часа. ü "Высокий уровень" стандартизации SDH-технологии позволяет использовать оборудование разных фирм-производителей в одной сети. Благодаря перечисленным преимуществам SDH стала технологией N 1 для создания транспортной сети. Сети SDH SDH модет использоваться во всех традиционных областях примения сетей. Только инфраструктура сети SDH обесчпечивает эффективное прямое взаимодействие между треммя главными видами сетей: ü Локальная сеть ü Сеть кольцевой стуктуры ü Магистральная сеть Самый низки уровень сигнала назван «Синхронный Транспортный Модуль» первого уровня или STM-1, имеющий скорость 155 Мб/с. Сигналы более высокого уровня получаются мультиплексированием с «чередованием байтов» сигналов низшего уровня. Линейная скорость более высокого уровня STM-N сигнала равна произведению N на 155.52 Мбит/с, т.е. линейную скорость сигнала самого низкого уровня.
Цикл SDH SDH сигнал транспортируется, как синхронная структура, которая включает набор байтов (по 8 бит), организованныйх как двухмерный массив – синхронный транспортный цикл. Цикл SDH состоит из 2-х частей: 1. Секционный заголовок (SOH=RSOH+MSOH) – область сигнала, которая обеспечивается в каждом цикле SDH для выполнения функций, поддерживающих и обслуживающих транспортировку «виртуальных контейнеров» между смежными узлами сети 2. Виртуальный контейнер(VC+POH) – включает “контейнерную” область, которая несет траффик клиента – полезную нагрузку, и трактовый заголовок РОН
Байты в цикле передаются слева-> направо, сверху ->вниз, т.е цикл передается как последовательность 9 строк. --> Структура цикла Цикл SDH можно представить как двухмерный массив из N-строк и M-столбцов ячеек, каждая из которых – отдельный байт синхронного сигнала. Идентичность каждого байта известна, и сохраняется относительно байтов цикловой синнхронизации, известных как А1 и А2, расположенных в самом начале массива и обеспечивающих точку отсчета, от которой определяются все остальные байты. Для сигнала STM-1: N=9 M=270. Расчет базовой скорости SDH производится следующим образом: V=N (строк)*M(столбцов)*8 бит (размер ячейки)* 8000циклов/с*=155,52 Мюит/с *-согласно теории Найквиста (удвоенная самая высокая частота канала ТЧ 4кГц) Мультиплексирование Более высокие скорости SDH формируютя процессом мультиплексирования сигналов более низкого уровня, таким образом, четыре параллельных и синхронных сигнала STM-1, могт быть объединены вместе методом «чередования байт», чтобы сформировать сигнал STM-4 со скоростью 4* STM-1. STM-4 сигнал имеет 9 рядов, но уже 1800 колонок, следовательно, SDН скорость=9 рядов*1800 колонок*8бит*8000циклов/с=622,08Мбит/с. Двухмерное представление сигнала STM-4 составляется из индивидуальных колонок от каждой из четырех STM-1 сигнальных структур и чередованием их в повторяющейся последовательности. Полная структура STM-4 составляется следующим образом: ü Первые 36 колонок цикла STM-4 образуют заголовок секции. ü Остальные 1044 колонки представляют 4 области полезной нагрузки, связанные с четырьмя STM-1 Анализ заголовка Для управления и обслуживания, сеть SDH может быть представлена в виде трех отдельных участков: Заголовок внутри SDH сигнала поддерживает обслуживание сети на уровнях тракта и секции. Заголовок секции (SOH) содержит заголовки регенерационной (RSOH) и мультиплексорной (MSOH) секций. Трактовый заголовок расположен в виртуальном контейнере (VC-4) в пределах STM-1.
Трактовый заголовок Функции: 1. Сообщение трассы тракта 2. Контроль четности 3. Структура виртуальног контейнера 4. Тревожная сигнализации и информация о характеристиках 5. Пользовательский канал 6. Индикация сверхцикла для TU (компонентных блоков) 7. Защитное переключение трактов Байты трактового заголовка J1 - 16-ти или 64х байтное сообщение о маршруте тракта поддерживает непрерывную проверку между любой точкой тракта и точкой начала тракта В3 – (побитовый контроль четности) – выполняет функцию контроля трактовых ошибок. С2 – указыват структуру виртуального контейнера, посредством метки, выбранной из 256 возможных значений. Эта информационная структура указывает, какие полезные нагрузки размещены в пределах виртуального контейнера. G1 – сообщение о состоянии наблюдаемых характеристик от приемного оборудования тракта к передающему. F2 – байт оператора тракта Н4 – индикация фазы сверхцикла TU полезных нашрузок F3 – байт канала пользователя К3 – обеспечение защиты на уровне тракта, переключение на индивидуальные тракты VC-4 N1 – сквозной контроль характеристики транзитной связи.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|