Общие принципы, характерные для нейросетей
Московский Автомобильно-Дорожный Институт (Государственный Технический Университет) Кафедра АСУ
Курсовая работа По дисциплине: «Интеллектуальные системы» Тема работы: «Общие принципы, характерные для нейросетей»
Москва 2000 Содержание Введение Наиболее интересные нейросетевые архитектуры и их приложения Общие принципы, характерные для нейросетей Локальность и параллелизм вычислений Программирование: обучение, основанное на данных Универсальность обучающих алгоритмов Сферы применения нейросетей Вывод Список литературы Введение
Традиционно нейрон описывался в терминах, заимствованных из нейрофизиологии. Согласно этим представлениям нейрон имеет один выход sj и несколько входов (синапсов), на которые поступают внешние воздействия хi (от рецепторов и от других нейронов). Количество нейронов в мозге оценивается величиной 1010-1011. Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы.
Рисунок 1. Схема межнейронного взаимодействия
Искусственные нейронные сети получили широкое распространение за последние 20 лет и позволили решать сложные задачи обработки данных, часто значительно превосходя точность других методов статистики и искусственного интеллекта, либо являясь единственно возможным методом решения отдельных задач. Нейросеть воспроизводит структуру и свойства нервной системы живых организмов: нейронная сеть состоит из большого числа простых вычислительных элементов (нейронов) и обладает более сложным поведением по сравнению с возможностями каждого отдельного нейрона. Нейросеть получает на входе набор входных сигналов и выдает соответствующий им ответ (выходные сигналы), являющийся решением задачи.
Искусственные нейронные сети применяются для задач классификации или кластеризации многомерных данных. Основная идея лежащая в основе нейронных сетей – это последовательное преобразование сигнала. Основой нейронной сети является кибернетический нейрон. Кибернетический нейрон состоит из 3 логических блоков: входы, функция преобразования и выход. На каждую комбинацию конкретных значений входов функция преобразования нейрона вырабатывает определённый сигнал (выход) (обычно скаляр), и передает его на входы другим нейронам сети. Подавая на входы некоторым нейронам сигналы извне, и отметив выходы части нейронов, как выходы сети в целом, мы получим систему, осуществляющую отображение. Нейронные сети различаются функцией преобразования в нейронах, внутренней архитектурой связей между нейронами и методами настройки (обучения). Основным плюсом нейросетей является возможность решения широкого класса задач алгоритмически не разрешимых или задач с нечёткими условиями. Доступность и возросшие вычислительные возможности современных компьютеров привели к широкому распространению программ, использующих принципы нейросетевой обработки данных, но исполняемых на последовательных компьютерах. Наиболее интересные нейросетевые архитектуры и их приложения
Модель Хопфильда с ассоциативной памятью. Многослойный персептрон, решающий обширный класс задач распознавания образов. •Самоорганизующиеся карты Кохенена, обладающие возможностью самостоятельно выявлять закономерности в данных а разбивать входные данные на кластеры.
•Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. •Вероятностные сети, аппроксимирующие Байесовские классификаторы с любой степенью точности. Общие принципы, характерные для нейросетей
Согласно общепринятым представлениям наиболее общими принципами, характерными для современных нейросетей являются: коннекционизм, нелинейность активационной функции, локальность и параллелизм вычислений, обучение вместо программирования, оптимальность обучающих алгоритмов. 1. Коннекционизм – это особое течение в философской науке, предметом которого являются вопросы познания. В рамках этого течения предпринимаются попытки объяснить интеллектуальные способности человека, используя искусственные нейронные сети. Составленные из большого числа структурных единиц, аналогичных нейронам, с заданным для каждого элемента весом, определяющим силу связи с другими элементами, нейронные сети представляют собой упрощённые модели человеческого мозга. Такая весовая модель обладает эффектом синапсов, соединяющих каждый нейрон с остальными. Эксперименты с нейронными сетями подобного рода продемонстрировали их способность к обучению выполнения таких задач, как распознавание образов, чтение и определение простых грамматических структур. Философы начали проявлять интерес к коннекционизму, так как коннекционистский подход обещал обеспечить альтернативу классической теории разума и широко распространённой в рамках этой теории идеи, согласно которой механизмы работы разума имеют сходство с обработкой символического языка цифровым компьютером. То, как именно и в какой степени парадигма коннекционизма составляет альтернативу классическим представлениям о природе разума, является предметом жарких споров, ведущихся в последние годы. Принцип коннекционизма означает, что каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных. Заметим, что наиболее последовательно этот принцип реализован в архитектуре многослойного персептрона.
Рисунок 2. Выделение областей сложной формы.
Отличительной чертой нейросетей является глобальность связей. Базовые элементы искусственных нейросетей - формальные нейроны - изначально нацелены на работу с широкополосной информацией. Каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных (см. Рисунок 1, иллюстрирующий наиболее широко распространенную в современных приложениях архитектуру многослойного персептрона). В этом основное отличие формальных нейронов от базовых элементов последовательных ЭВМ - логических вентилей, имеющих лишь два входа. В итоге, универсальные процессоры имеют сложную архитектуру, основанную на иерархии модулей, каждый из которых выполняет строго определенную функцию. Напротив, архитектура нейросетей проста и универсальна. Специализация связей возникает на этапе их обучения под влиянием конкретных данных.
Рисунок 3. Глобальность связей в искуственных нейросетях
Типичный формальный нейрон производит простейшую операцию - взвешивает значения своих входов со своими же локально хранимыми весами и производит над их суммой нелинейное преобразование:
Рисунок 4. Нейрон производит нелинейную операцию над линейной комбинацией входов Нелинейность выходной функции активации Он получает входные сигналы (исходные данные либо выходные сигналы других нейронов нейронной сети) через несколько входных каналов. Каждый входной сигнал проходит через соединение, имеющее определенную интенсивность (или вес); этот вес соответствует синаптической активности биологического нейрона. С каждым нейроном связано определенное пороговое значение. Вычисляется взвешенная сумма входов, из нее вычитается пороговое значение и в результате получается величина активации нейрона (она также называется пост-синаптическим потенциалом нейрона - PSP). Сигнал активации преобразуется с помощью функции активации (или передаточной функции) и в результате получается выходной сигнал нейрона. Нелинейность разрушает линейную суперпозицию и приводит к значительному расширению возможностей нейросетей.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|