Перечень условных обозначений
Содержание
Перечень условных обозначений Введение 1 Определение и основные свойства конечных групп с условием плотности для -субнормальных подгрупп 2 Свойства максимальных подгрупп в группах с плотной системой -субнормальных подгрупп 3 Описание конечных не -групп с плотной системой -субнормальных подгрупп Заключение Литература Перечень условных обозначений
В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами обозначаются простые числа. Будем различать знак включения множеств и знак строгого включения ; и --- соответственно знаки пересечения и объединения множеств; --- пустое множество; --- множество всех , для которых выполняется условие ; --- множество всех простых чисел; --- некоторое множество простых чисел, т.е. ; --- дополнение к во множестве всех простых чисел; в частности, ; примарное число --- любое число вида ; --- множество всех целых положительных чисел. --- некоторое линейное упорядочение множества всех простых чисел . Запись означает, что предшествует в упорядочении , . Пусть --- группа. Тогда: --- порядок группы ; --- порядок элемента группы ; --- единичный элемент и единичная подгруппа группы ; --- множество всех простых делителей порядка группы ; --- множество всех различных простых делителей натурального числа ; --группа --- группа , для которой ; --группа --- группа , для которой ; --- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ; --- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ; --- коммутант группы ;
--- --холловская подгруппа группы ; --- силовская --подгруппа группы ; --- дополнение к силовской --подгруппе в группе , т.е. --холловская подгруппа группы ; --- группа всех автоморфизмов группы ; --- является подгруппой группы ; нетривиальная подгруппа --- неединичная собственная подгруппа; --- является нормальной подгруппой группы ; --- подгруппа характеристична в группе , т.е. для любого автоморфизма ; --- индекс подгруппы в группе ;
;
--- централизатор подгруппы в группе ; --- нормализатор подгруппы в группе ; --- центр группы ; --- циклическая группа порядка ; Если и --- подгруппы группы , то: --- прямое произведение подгрупп и ; --- полупрямое произведение нормальной подгруппы и подгруппы . Группа называется: примарной, если ; бипримарной, если . Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп. --- подгруппа, порожденная всеми , для которых выполняется . Группу называют --нильпотентной, если . Группу порядка называют --дисперсивной, если выполняется и для любого имеет нормальную подгруппу порядка . Если при этом упорядочение таково, что всегда влечет , то --дисперсивная группа называется дисперсивной по Оре. Цепь --- это совокупность вложенных друг в друга подгрупп. Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу. Цепь называется -цепью (с индексами ); если при этом является максимальной подгруппой в для любого , то указанная цепь называется максимальной -цепью. Ряд подгрупп называется: субнормальным, если для любого ; нормальным, если для любого . Нормальный ряд называется главным, если является минимальной нормальной подгруппой в для всех . Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Так же обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
--- класс всех групп; --- класс всех абелевых групп; --- класс всех нильпотентных групп; --- класс всех разрешимых групп; --- класс всех --групп; --- класс всех сверхразрешимых групп. Пусть --- некоторый класс групп и --- группа, тогда: --- --корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если --- формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если --- формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы . Формация называется насыщенной, если всегда из следует, что и . Класс групп называется наследственным или -замкнутым, если из того, что , следует, что и каждая подгруппа группы также принадлежит . Пусть --- некоторая непустая формация. Максимальная подгруппа группы называется: -нормальной, если ; -абнормальной, если . Максимальная -цепь называется -субнормальной, если для любого подгруппа -нормальна в . Подгруппа группы называется -субнормальной, если существует хотя бы одна -субнормальная максимальная -цепь. Группа называется группой с плотной системой -субнормальных подгрупп, если для любых двух различных подгрупп и группы , из которых первая содержится во второй и не максимальна в ней, в группе существует такая -субнормальная подгруппа , что . В этом случае также говорят, что множество -субнормальных в подгрупп плотно.
Введение
Изучение строения групп по заданным свойствам системы их подгрупп является одним из основных направлений в теории конечных групп. Отметим, что темп и глубина таких исследований непрерывно возрастают. Это направление изучения групп берет свое начало с групп Миллера-Морено, групп Шмидта. В качестве свойств, налагаемых на системы подгрупп, рассматривались абелевость, нормальность, субнормальность, дополняемость и др. Это направление получило широкое развитие в работах многих ведущих алгебраистов. С дедекиндовых групп, то есть групп, у которых нормальны все подгруппы, началось изучение различных (как конечных, так и бесконечных) групп, у которых некоторая система подгрупп удовлетворяет условию нормальности. Описание конечных дедекиндовых групп дано в работе Р. Дедекинда, а бесконечных в работе Р. Бэра. Эти работы определили важное направление исследований в теории групп. Главной целью этого направления является описание обобщенно дедекиндовых групп. Эти обобщения дедекиндовых групп осуществляются либо путем сужения системы подгрупп , то есть подгрупп нормальных во всей группе, либо ослабления свойства нормальности для подгрупп из . Среди таких обобщений выделим следующие исследования.
Первое существенное обобщение дедекиндовых групп принадлежит О.Ю. Шмидту. Он описал конечные группы с одним и двумя классами сопряженных ненормальных подгрупп, а также установил нильпотентность конечной группы, у которой нормальны все максимальные подгруппы. Конечные группы с нормальными -тыми максимальными подгруппами изучали Б. Хупперт и З. Янко. Д.Бакли изучал конечные группы, у которых нормальны все минимальные подгруппы. Значительные расширения класса дедекиндовых групп возникают при переходе от условия нормальности к различным ее обобщениям, как, например, к квазинормальности, субнормальности, нормализаторным условиям и др. В начале 70-х годов по инициативе С.Н.Черникова началось изучение групп с плотными системами подгрупп. Система подгрупп группы , обладающая некоторым свойством , называется плотной в , если для любых двух подгрупп из , где не максимальна в , найдется -подгруппа такая, что . Группы с плотной системой дополняемых подгрупп были изучены С.Н.Черниковым. В 1974 году С.Н.Черников поставил следующий вопрос: каково строение группы , в которой множество всех ее субнормальных подгрупп плотно? Ответ на этот вопрос был получен А.Манном и В.В.Пылаевым. Заметим, что в теории формаций понятие субнормальности обобщается следующим образом. Говорят, что подгруппа является -субнормальной в , если существует цепь подгрупп
такая, что является -нормальной максимальной подгруппой в для любого . Если совпадает с классом всех нильпотентных групп (который является, конечно, -замкнутой насыщенной формацией), то -субнормальная подгруппа оказывается субнормальной. В связи с развитием теории формаций большое внимание стало уделяться исследованию конечных групп, насыщенных --подгруппами, --субнормальными или --абнормальными подгруппами. В этом направлении проводили свои исследования Л.А.Шеметков, Гашюц, Картер, Шмид, Хоукс и другие. Ясно, что вопрос С.Н.Черникова можно сформулировать в следующей общей форме: если --- -замкнутая насыщенная формация, то каково строение группы, в которой множество всех ее -субнормальных подгрупп плотно? В таком виде вопрос С.Н.Черникова был исследован в работе для случая, когда --- класс всех -нильпотентных групп. В настоящей работе мы исследуем данный вопрос в случаях, когда --- произвольная -замкнутая насыщенная формация либо -нильпотентных, либо -дисперсивных, либо сверхразрешимых групп.
1. Определение и основные свойства конечных групп с условием плотности для -субнормальных подгрупп
Опишем вначале общие свойства конечных групп с плотной системой -субнормальных подгрупп, где --- произвольная насыщенная -замкнутая формация. Группа называется группой с плотной системой -субнормальных подгрупп, если для любых двух различных подгрупп и группы , из которых первая содержится во второй и не максимальна в ней, в группе существует такая -субнормальная подгруппа , что . В этом случае также говорят, что множество -субнормальных в подгрупп плотно. Пусть --- непустая -замкнутая насыщенная формация, --- подгруппа группы . Тогда справедливы следующие утверждения: 1) ; 2) если -субнормальна в и является подформацией формации , то -субнормальна в . Доказательство. 1) Из того, что
следует, что . Это значит, что . 2) Так как , то и . Отсюда следует, что каждая -нормальная максимальная подгруппа является -нормальной максимальной. Лемма доказана. Пусть --- непустая -замкнутая насыщенная формация. Если множество всех -субнормальных подгрупп плотно в группе , то справедливы следующие утверждения: 1) если , то в множество всех -субнормальных подгрупп плотно; 2) если --- подгруппа из , то множество всех -субнормальных подгрупп из является плотным в . Доказательство. 1) Пусть --- нормальная подгруппа группы . В фактор-группе рассмотрим две произвольные подгруппы , из которых первая не максимальна во второй. Тогда и не максимальна в . По условию, в существует -субнормальная подгруппа такая, что . Следовательно, -субнормальна в .
2) Пусть --- подгруппа из и --- две произвольные подгруппы из такие, что не максимальна в . Тогда, по условию, в существует -субнормальная подгруппа , для которой . Ввиду леммы, -субнормальна в . Лемма доказана. Если --- -субнормальная подгруппа группы , то .
Доказательство. По определению, существует цепь
такая, что является -нормальной максимальной подгруппой в при любом . Таким образом, и потому
для каждого . Следовательно, . Пусть --- непустая -замкнутая насыщенная формация, --- группа, у которой множество всех ее -субнормальных подгрупп плотно. Справедливы следующие утверждения: 1) если --- -абнормальная максимальная подгруппа группы , то либо , либо каждая -абнормальная максимальная подгруппа из принадлежит ; 2) если и , то либо максимальна в , либо -субнормальна в . Доказательство. Докажем сначала 1). Пусть --- -абнормальная максимальная подгруппа, не принадлежащая . Допустим, что обладает -абнормальной максимальной подгруппой , не принадлежащей . Тогда в имеется -абнормальная максимальная подгруппа . По условию, в найдется такая -субнормальная подгруппа , что . Ясно, что . По лемме,
.
Так как -субнормальна, то она содержится в -нормальной максимальной подгруппе, и поэтому . Значит, . Последнее противоречит следующему:
Докажем 2). Пусть и . Допустим, что не максимальна в . По условию, в найдется такая -субнормальная подгруппа , что . Так как -замкнута, то . Поэтому -субнормальна в . Теперь ясно, что -субнормальна в . Лемма доказана. Пусть --- насыщенная -замкнутая формация, --- группа с нормальной силовской -подгруппой , удовлетворяющая следующим условиям: 1) ; 2) холлова -подгруппа -группы является максимальной в и принадлежит ; 3) любая собственная подгруппа из -субнормальна в . Тогда является минимальной не -группой. Доказательство. Из условия прямо следует, что совпадает с и является минимальной нормальной подгруппой в . Понятно, что каждая -абнормальная максимальная подгруппа из сопряжена с и поэтому принадлежит . Пусть --- произвольная -нормальная максимальная подгруппа из . Тогда . Так как -замкнута, то . Подгруппа является собственной в и по условию -субнормальна в . По теореме,
.
Итак, каждая максимальная подгруппа из принадлежит . Лемма доказана.
2. Свойства максимальных подгрупп в группах с плотной системой -субнормальных подгрупп
В данном разделе изучаются свойства максимальных подгрупп конечных групп с плотной системой -субнормальных подгрупп, где --- произвольная насыщенная -замкнутая формация. Пусть далее --- некоторое фиксированное упорядочение множества всех простых чисел. Пусть --- произвольная насыщенная -замкнутая формация, --- -дисперсивная группа с плотной системой -субнормальных подгрупп, не принадлежащая , у которой все -абнормальные максимальные подгруппы принадлежат . Тогда справедливо одно из следующих утверждений: 1) --- максимальная подгруппа в ; 2) --- максимальна в -абнормальной максимальной подгруппе из . Доказательство. Пусть --- группа минимального порядка, для которой лемма не верна. По теореме --- -группа. Пусть --- -абнормальная максимальная подгруппа группы . Тогда содержит некоторую -холлову подгруппу . По нашему предположе
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|