Выбор режима дуговой сварки
Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования Федеральное государственное образовательное учреждение высшего образования «Красноярский государственный аграрный университет» Институт энергетики и управления энергетическими ресурсами с/х Кафедра: Электроснабжения сельского хозяйства Отчет по производственной практике
Красноярск 2014
СОДЕРЖАНИЕ
1.Введение…………………………………………………………….1 2.Характеристика предприятия……………………………………...3 3.Индивидуальные задания………………………………………….4 3.1Выбор режимов электродуговой сварки. 3.2 Медь. Свойства меди. Сплавы на основе меди. 3.3 Технология сварки монометаллов и сплавов. 4.Выполняемая работ………………………………………………....6 5.Литература ………………………………………………………….6
Характеристика производственной деятельности ЗАО «Искра»
Закрытое Акционерное Общество «Искра» расположено в городе Ужуре. Основано в 1969 году. На момент основания руководителем предприятия был Толстиков Юрий Иванович, нынешним руководителем является Сергей Юрьевич Толстиков. Основной производственной деятельностью сельскохозяйственного Закрытого Акционерного общества является молочно-мясное направление с развитием земледелия, а также коммерческая деятельность, которая включает в себя переработку: зерновой, мясной, молочной, рыбной продукции, а также последующий её сбыт. В хозяйстве имеются: цех по переработке мяса, колбасный цех, молочный цех, сырцех, рыбный цех, хлебопекарня, кондитерский цех.
Система земледелия разработана с учётом современного состояния материально-технической базы хозяйства и реального роста обеспеченности материально-техническими ресурсами(техникой, удобрениями, семенами, автотранспортом), особенностями технологии производства сельскохозяйственной продукции и борьбы почвенной эрозии. Основной вид работ - обработка почвы (вспашка, боронование, лущение, прикатывание посевов и т.д.) В связи с тем, что хозяйство находится в зоне рискованного земледелия, все агрономические работы необходимо выполнять в оптимальные сроки. Несоблюдение сроков производственных работ ведёт к нарушению технологического процесса и сроков посевной компании, что в свою очередь приводит к снижению урожайности и экономическим потерям. ЗАО «Искра» является одним из лидирующих сельскохозяйственных предприятий Красноярского края.
Выбор режима дуговой сварки При выборе режимов сварки следует учитывать и наличие скоса свариваемых кромок. Все эти обстоятельства учтены и сведены в таблицах 2 и 3. Особенности горения сварочной дуги на постоянном и переменном токе различны. Дуга, представляющая собой газовый проводник, может отклоняться под воздействием магнитных полей, создаваемых в зоне сварки. Процесс отклонения сварочной дуги под действием магнитных полей называют магнитным дутьем, которое затрудняет сварку и стабилизацию горения дуги.
Таблица 2. Режим сварки стыковых соединений без скоса кромок Примечание: максимальное значение тока должно уточняться по паспорту электродов.
Таблица 3. Режимы сварки стыковых соединений со скосом кромок
Примечание: значение величины тока уточняется по паспортным данным электрода. Особенно ярко выражено магнитное дутье при сварке на источнике постоянного тока. Магнитное дутье ухудшает стабилизацию горения дуги и затрудняет процесс сварки. Для уменьшения влияния магнитного дутья применяют меры защиты, к которым относят: сварку на короткой дуге, наклон электрода в сторону действия магнитного дутья, подвод сварочного тока к точке, максимально близкой к дуге и т.д. Если полностью избавиться от действия магнитного дутья не удается, то меняют источник питания на переменный, при котором влияние магнитного дутья заметно снижается. Малоуглеродистые и низколегированные стали обычно варят на переменном токе. Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён[3]. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро ижелезо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк[4]. Медный век, когда значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Экспериментальные исследования С. А. Семёнова с сотрудниками показали, что, несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий[5]. В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришел на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.
Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди: На Кипре уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди. На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на Алтае. В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник(1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.). С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике[6]. Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет. Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.
Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4. Медь обладает высокой тепло-[12] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м[13]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком. Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие. Изотопы меди[править | править вики-текст] 5. Сплавы на основе меди: классификация, маркировка, свойства, применение. Свойства меди. Медь – металл красновато – розового цвета, имеет гранецентрированную кубическую решетку с параметром а=3,60 нм. Плотность меди 8,94 г/см3, Тпл=1083°С. В зависимости от химического состава медь выпускается в виде технических марок МОО, МО, М1 (99,9 %Сu),М2, М3, М4(99,0 %Cu). Медь имеет высокую тепло и электропроводность (100 %- эталон электропроводности), пластичность, коррозионную стойкость, легко обрабатывается давлением, но плохо – резанием. Отожженная при Т=600°С медь имеет следующие свойства: σb=220МПа, δ=50 %. Медь прокатывается в тонкие листы, ленту, проволоку микронной толщины, склонна к наклепу. Медь легко полируется, хорошо паяется, сваривается. Примеси резко снижают тепло и электропроводность меди. Литейные свойства меди низкие из-за высокой усадки и низкой жидкотекучести. Классификация и маркировка медных сплавов. По техническим свойствам медные сплавы делятся на деформируемые(ГОСТ18175-78) и литейные (ГОСТ613-83); по способности к закалке – термоупрочняемые и нетермоупрочняемые; по химическому составу на бронзы (Cu +другие элементы, кроме Zn) и латуни (Сu+Zn и другие элементы).В медных сплавах легирующие элементы обозначаются следующим образом: О-олово, С-свинец, А-алюминий, Ж-железо, Мц-марганец, Н-никель, К-кремний, Ф-фосфор, Б-бериллий, Мн-марганец. Бронзы маркируются буквами «Бр» (бронза) и буквами и цифрами: буквы означают название элемента, а цифры – его количество в сплаве в процентах. Например, Бр05Ц5С5 содержит 5 % олова, 5 % цинка, 5 %свинца, остальное – медь. Латуни маркируются буквой «Л» (латунь) и цифрой, показывающей содержание легирующего элемента в процентах. В марках легированных латуней кроме цифры, указывающей содержание цинка, даются буквы и цифры, обозначающие название и количество в процентах легирующих элементов. Например, ЛЦ35А3Ж2Мц1 содержит: 35%Zn, 3 %Al, 2 %Fe, 1%Mn, остальные 59 % составляет Cu. Бронзы имеют более высокие по сравнению с латунями прочностные, антифрикционные, коррозионостойкие свойства, но являются более дорогими. Латуни. Медь с цинком образует твердый раствор высокой концентрации. Латуни(ГОСТ17711-74) бывают двойные (Сu+Zn) и многокомпонентные (Cu+Zn+Pb,Ni,Si и т.д.). Двойные латуни делятся на две группы: 1. Однофазные (Zn < 39 %), имеющие структуру –ά твердого раствора (Л62, Л68 и др.). 2.Двухфазные (Zn >39 %), имеющие структуру (α+β) твёрдого раствора (Л60 и др.) Однофазные латуни пластичны, хорошо поддаются пластической деформации в холодном, и хуже в горячем состоянии, поэтому латунь применяется для изготовления листов, проволоки, ленты путем холодной прокатки. Для прокатки в горячем состоянии применяется двухфазная латунь. Латуни имеют хорошие литейные свойства, хорошо обрабатываются резанием, хорошо прирабатываются, полируются и противостоят износу. Электро и теплопроводность составляет 20-50 % от меди, коррозионная стойкость хуже, чем у меди из-за наличия примесей. Механические свойства латуней невысоки: для α–латуней: σb =260-300 МПа, δ %=40-50 %; для α+β латуней: σb=350-400 МПа, δ %=20-30 %. Многокомпонентные латуни относятся к специальным, имеющим дополнительно те или иные свойства. Обычно латуни легируются Pb, Sn, Si, Ni, Al и др. Алюминий повышает прочность, твердость и коррозионную стойкость. Алюминиевая латунь ЛЦ21А2 обладает высокой коррозионной стойкостью в морской воде. Олово повышает коррозионную стойкость в морской воде, поэтому оловянные латуни называются «морскими» и применяются в судостроении (ЛЦ8701, ЛЦ2901 и др.) Кремний улучшает коррозионную стойкость, жидкотекучесть, свариваемость, способность к деформации как в холодном, так и горячем состоянии, поэтому кремнистые латуни.(например,ЛЦ17К3) применяются в виде сложных фасонных отливок, поковок, прутков, штамповок и т.д. Свинец улучшает обрабатываемость резанием, поэтому свинцовую латунь (например, ЛЦ40С) называют «автоматной»,то есть предназначенной для обработки на станках-автоматах. Никель улучшает механические свойства и повышает коррозионную стойкость, поэтому никелевые латуни типа ЛЦ30Н5 применяются в морском судостроении и в химическом машиностроении. Бронзы. Бронзы - двойные или многокомпонентные сплавы на основе меди. В качестве легирующих элементов применяется олово (О), свинец (С), алюминий (А), железо (Ж), марганец (Мц), никель (Н), кремний (К), фосфор (Ф), бериллий (Б) и другие элементы. Sn, Al, Ni, Si увеличивают прочность, упругость и коррозионную стойкость; Pb, P, Zn придают бронзе антифрикционные свойства; Mn и Si – жаростойкость, Fe и Ni – измельчают зерно и повышают твёрдость и прочность; Be повышает упругость и прочность. По химическому составу бронзы делятся на оловянные (до 10 % Sn по ГОСТ 613-79) и безоловянные(ГОСТ18175-78), а по технологическим признакам - на литейные и обрабатываемые давлением. Оловянные бронзы хорошо обрабатываются резанием, хорошо паяются, хуже свариваются, имеют очень малую усадку (<1 %),но образуют рассеянную пористость, что препятствует получению из них герметичных деталей. Они имеют низкий коэффициент трения, хорошую притираемость и износостойкость при работе в паре со сталью, что в сочетании с высокой теплопроводностью и хорошими механическими свойствами позволяет использовать их для подшипников скольжения ответственного назначения, работающих при высоких давлениях и скоростях. Широкое распространение получили литейные оловянные бронзы Бр010Ф1, Бр03Ц12С5 и некоторые другие. Бронза Бр010Ф1, идущая на изготовление подшипников скольжения, имеет следующие свойства: σb=300 МПа, δ=3 %. Бронзы, обрабатываемые давлением, хорошо куются, штампуются, прокатываются. Оловянные бронзы БР04Ц3, Бр04С4Ц4 применяются для изготовления полуфабрикатов (лент, полос, прутков) и деталей из них. Бр04С4Ц4 имеет следующие механические свойства: σb =350 МПа, δ=40 %, НВ=60. Деформируемые бронзы, наряду с хорошей электропроводностью, коррозионной стойкостью, антифрикционностью, обладают высокими упругими свойствами и сопротивлением усталости. Их используют для изготовления пружинящих деталей во многих отраслях промышленности. Алюминиевые бронзы отличаются высокими механическими, антифрикционными и антикоррозионными свойствами. Они обладают высокой жидкотекучестью, хорошей герметичностью, образуют концентрированную усадочную раковину. Алюминиевые бронзы делятся на однофазные (БрА5, БрА7 имеющие σb=450 МПа, δ=60 %) и двухфазные (БрА10 имеющие σb=600 МПа, δ=15 %). Двухфазные можно подвергать упрочняющей термообработке: закалке и последующему старению. Легирование алюминиевых бронз улучшает их свойства: механические, технологические, эксплуатационные и др. Так БрА10Ж4Н4 в отожженом состоянии имеет σb=650 МПа, δ=35 %, НВ=160, после закалки имеет σb=800 МПа, δ=3 %. Алюминиевые бронзы применяются как в виде проката и поковок (прутки, ленты), так и в виде фасонных отливок для деталей ответственного назначения. Из них изготавливают детали, работающие в тяжелых условиях износа при повышенных температурах (400-500°С): седла клапанов, детали насосов, турбины, шестерни, венцы колёс и т.д. Свинцовистые бронзы сочетают хорошие антифрикционные свойства с высокой теплопроводностью. Они хорошо воспринимают ударные нагрузки и имеют высокий предел выносливости, поэтому применяются для ответственных высоконагруженных подшипников скольжения, работающих при больших скоростях. Наибольшее распространение получила бронза БрС30 (σb=160 МПа, δ=8 %), применяемая для подшипников скольжения коленчатого вала КАМАЗА, тракторов и других машин. Кремнистые бронзы имеют хорошие механические свойства, в том числе пружинящие и антифрикционные свойства, а также высокую коррозионную стойкость. Бронзы пластичны, хорошо обрабатываются давлением, хорошо свариваются, паяются, удовлетворительно обрабатываются резанием. Литейные свойства ниже, чем у оловянных. Легированные кремнистые бронзы могут подвергаться закалке и старению. БрК1Н3 после закалки и старения имеет σb=740 МПа, δ=8 %. Из кремнистых бронз изготавливают ленты, полосы, прутки, проволоку, идущие на производство пружин, мембран и тому подобных деталей. Бериллиевые бронзы отличаются чрезвычайно высоким пределом упругости и прочности, твердостью, коррозионной стойкостью, повышенным сопротивлением усталости, хорошо обрабатываются резанием и свариваются точечной сваркой, не дают искр при ударе, сохраняют свойства до 500°С. Бериллиевые бронзы выпускаются в виде полос, лент, проволоки, а также в виде фасонных отливок и могут подвергаться упрочняющей термообработке закалке и старению. Бронза БрБ2 после закалки и старения имеет σb=1250 МПа, δ=2,5 %, НВ=370. Из бериллиевых бронз изготавливают детали особо ответственного назначения: упругие элементы точных приборов, подшипники, инструменты (зубила, молотки и т.д.) не дающие искр. Марганцевые бронзы отличаются высокой коррозионной стойкостью и жаропрочностью. Бронзы имеют хорошую жидкотекучесть, хорошо обрабатываются давлением. Наиболее широко применяется бронза БрМц5, (σb=300 МПа, δ=40 %), которая сохраняет свойства до температуры 400°С. Бронза выпускается в виде поковок, листов, лент, идущих на изготовление деталей, работающих при повышенных температурах (например арматура паровых котлов и т.д.).
Источник: http://5fan.ru/wievjob.php?id=45951 Выполняемая работа. Производственную эксплуатационную практику по специальности «Электрослесарная» я проходил в сельскохозяйственном предприятии ЗАО «Искра». Во время практики я вместе с руководителем по практике ознакомились с правилами безопасности и техникой оказания медицинской помощи пострадавшему, после удара током. Во время практики я прочитал техническую литературу, которая по могла мне с прохождение практики. Нас отправили на объект, где нам предстояла заменить на объекте всю электрическую проводку, но для этого нам еще предстояла штробление стен так как прокладывать проводку пришлось в новых местах по технике безопасности, смена ламп накаливания на Люминесцентные лампы T8 NATURA L15W/76 G13,
замена розеток и выключателей.Штробление стен усушествлялось с помощью штробореза«MAKITA SG 1250»рис.1 и перфоратора «MAKITA HR 4511 C» рис. 2.
Рис.1 выполнение штробление. Рис.2 Технические данные штробореза«MAKITA SG 1250
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|